【題目】小趙投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),當(dāng)月內(nèi)銷售單價(jià)不變,則月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):.
(1)設(shè)小趙每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價(jià)才可以實(shí)現(xiàn)這一目標(biāo)?
【答案】(1)當(dāng)銷售單價(jià)定為35元時(shí),每月獲得的利潤最大,最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價(jià)應(yīng)不低于30元而不高于40元.
【解析】
試題(1)根據(jù)總利潤=單利潤×銷售量即可得到函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即得結(jié)果;
(2)先求得利潤為2000元時(shí)對(duì)應(yīng)的銷售單價(jià),再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果.
(1)由題意得w=(x-20)·y=(x-20)·()
當(dāng)時(shí),;
(2)由題意得
解得x1 =30,x2 =40
即小趙想要每月獲得2000元的利潤,銷售單價(jià)應(yīng)定為30元或40元
∵
∴拋物線開口向下
∴當(dāng)30≤x≤40時(shí),w≥2000
答:(1)當(dāng)銷售單價(jià)定為35元時(shí),每月可獲得最大利潤,且最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價(jià)應(yīng)不低于30元而不高于40元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為BC上一點(diǎn),AE⊥DE,∠DAE=30°,若DE=m+n,且m、n滿足m= + +2,試求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C.過點(diǎn)C作CD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D.
(1)求該拋物線的解析式;
(2)若將該拋物線向下平移m個(gè)單位,使其頂點(diǎn)落在D點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一棟居民樓AB的高為16米,遠(yuǎn)處有一棟商務(wù)樓CD,小明在居民樓的樓底A處測得商務(wù)樓頂D處的仰角為,又在商務(wù)樓的樓頂D處測得居民樓的樓頂B處的俯角為.其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)的正下方,且A、C兩點(diǎn)在同一水平線上,求商務(wù)樓CD的高度.
(參考數(shù)據(jù): , .結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一題計(jì)分.
A.如圖,DE為△ABC的中位線,點(diǎn)F為DE上一點(diǎn),且∠AFB=90°,若AB=8,BC=10,則EF的長為________.
B.小智同學(xué)在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?/span>24.8(不考慮身高因素),則大雁塔市約為________米.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過銳角△ABC的頂點(diǎn)A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長線于點(diǎn)F.在AF上取點(diǎn)M,使得AM=AF,連接CM并延長交直線DE于點(diǎn)H.若AC=2,△AMH的面積是,則的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并解決相應(yīng)問題:
材料一:換元法是數(shù)學(xué)中的重要方法,利用換元法可以從形式上簡化式子,在求解某些特殊方程時(shí),利用換元法常?梢赃_(dá)到轉(zhuǎn)化的目的,例如在求解一元四次方程,就可以令,則原方程就被換元成,解得 t 1,即,從而得到原方程的解是 x 1
材料二:楊輝三角形是中國數(shù)學(xué)上一個(gè)偉大成就,在中國南宋數(shù)學(xué)家楊輝 1261 年所著的《詳解九章算法》一書中出現(xiàn),它呈現(xiàn)了某些特定系數(shù)在三角形中的一種有規(guī)律的幾何排列,下圖為楊輝三角形:
……………………………………
(1)利用換元法解方程:
(2)在楊輝三角形中,按照自上而下、從左往右的順序觀察, an 表示第 n 行第 2 個(gè)數(shù)(其中 n≥4),bn 表示第 n 行第 3 個(gè)數(shù),表示第行第 3 個(gè)數(shù),請(qǐng)用換元法因式分解:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分別為AB、AC上的點(diǎn),連接CE,BM交于點(diǎn)G,且BM⊥CE,O為AC的中點(diǎn),連接BO交CE于點(diǎn)N.
(1)如圖①,若AB=6,2MO=AM,求BM的長;
(2)如圖②,連接OG、AG,若AG⊥OG,求證:AC=BG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com