【題目】[閱讀理解]

我們知道:,那么結(jié)果等于多少呢?

在圖1所示的等邊三角形數(shù)陣中,第行的一個(gè)小等邊三角形中的數(shù)為,即行的三個(gè)小等邊三角形中的數(shù)的和是; ..第行的個(gè)小等邊三角形中的數(shù)的和是個(gè),即,該等邊三角形數(shù)陣中共有小等邊三角形,所有小等邊三角形數(shù)的和為

[規(guī)律探究]

以圖1中的等邊三角形數(shù)陣的右底角頂點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)再把旋轉(zhuǎn)后的圖形按同樣的方法可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)等邊三角形數(shù)陣各行同一位置的小等邊三角形中的數(shù),發(fā)現(xiàn)位于奇數(shù)位置的三個(gè)數(shù)(如第行的第個(gè)小三角形中的數(shù)分別為的和為;發(fā)現(xiàn)位于偶數(shù)位置的三個(gè)數(shù)(如第行的第個(gè)小三角形中的數(shù)分別為的和為;而每個(gè)等邊三角形數(shù)陣中,由于位于奇數(shù)位置的數(shù)比位于偶數(shù)位置的數(shù)多個(gè),則位于偶數(shù)位置的數(shù)有_

個(gè) ,位于奇數(shù)位置的數(shù)有 個(gè), 由此可得,這三個(gè)等邊三角形數(shù)陣所有數(shù)的總和為:

因此,

[解決問(wèn)題]根據(jù)以上發(fā)現(xiàn),計(jì)算:

【答案】[規(guī)律探究],,,;[解決問(wèn)題]

【解析】

[規(guī)律探究] 設(shè)每個(gè)等邊三角形數(shù)陣中位于偶數(shù)位置的數(shù)有x個(gè),根據(jù)題意列出方程即可求出x的值,從而求出每個(gè)等邊三角形數(shù)陣中位于奇數(shù)位置的數(shù)的個(gè)數(shù),再根據(jù)題意,即可求出這三個(gè)等邊三角形數(shù)陣所有數(shù)的總和,即可求出最終結(jié)論;

[解決問(wèn)題] 2n1=2019,即可求出n的值,然后代入[規(guī)律探究]的公式即可求出結(jié)論.

解:[規(guī)律探究]設(shè)每個(gè)等邊三角形數(shù)陣中位于偶數(shù)位置的數(shù)有x個(gè),

由題意可得x+(xn=n2

解得:x=,

則每個(gè)等邊三角形數(shù)陣中位于奇數(shù)位置的數(shù)有n=

∴由此可得,這三個(gè)等邊三角形數(shù)陣所有數(shù)的總和為: 4n1)×+(4n1)×=

故答案為:,;

[解決問(wèn)題] 2n1=2019

解得:n=1010

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,菱形的頂點(diǎn)、在菱形的邊上,且,請(qǐng)直接寫出的結(jié)果(不必寫計(jì)算過(guò)程)

2)將圖1中的菱形繞點(diǎn)旋轉(zhuǎn)一定角度,如圖2,求;

3)把圖2中的菱形都換成矩形,如圖3,且,此時(shí)的結(jié)果與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫出變化后的結(jié)果(不必寫計(jì)算過(guò)程);若無(wú)變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線經(jīng)過(guò)點(diǎn)AC

1)求拋物線的解析式;

2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m

①當(dāng)是直角三角形時(shí),求點(diǎn)P的坐標(biāo);

②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),則平面內(nèi)存在直線l,使點(diǎn)M,B,到該直線的距離都相等.當(dāng)點(diǎn)Py軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定一個(gè)函數(shù),如果這個(gè)函數(shù)的圖象上存在一個(gè)點(diǎn),它的橫、縱坐標(biāo)相等,那么這個(gè)點(diǎn)叫做該函數(shù)的不變點(diǎn).

1)一次函數(shù)的不變點(diǎn)的坐標(biāo)為______

2)二次函數(shù)的兩個(gè)不變點(diǎn)分別為點(diǎn)的左側(cè)),將點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到點(diǎn),求點(diǎn)的坐標(biāo).

3)已知二次函數(shù)的兩個(gè)不變點(diǎn)的坐標(biāo)為

①求的值;

②如圖,設(shè)拋物線與線段圍成的封閉圖形記作.點(diǎn)為一次函數(shù)的不變點(diǎn),以線段為邊向下作正方形.當(dāng)兩點(diǎn)中只有一個(gè)點(diǎn)在封閉圖形的內(nèi)部(不包含邊界)時(shí),求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點(diǎn),則∠OAB大小的變化趨勢(shì)為( )

A.逐漸變小B.逐漸變大C.時(shí)大時(shí)小D.保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc0;②4a+2b+c0;③a;④bc.其中含所有正確結(jié)論的選項(xiàng)是( )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】是一個(gè)演講臺(tái),圖是演講臺(tái)的側(cè)面示意圖,支架BC是一段圓弧,臺(tái)面與兩支架的連接點(diǎn)A,B間的距離為30cmCD為水平地面,∠ADC75°,∠DAB60°,BDCD

1)求BD的長(zhǎng)(結(jié)果保留整數(shù),參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,1.7);

2)如圖,若圓弧BC所在圓的圓心OCD的延長(zhǎng)線上,且ODCD,求支架BC的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,以為斜邊,作直角,使點(diǎn)落在內(nèi),

1)如圖1,若,,,點(diǎn),、分別為,的中點(diǎn),連接,求線段的長(zhǎng);

2)如圖2,若,把繞點(diǎn)遞時(shí)針旋轉(zhuǎn)一定角度,得到,連接并延長(zhǎng)變于點(diǎn),求證:;

3)如圖3,若,過(guò)點(diǎn)的直線交于點(diǎn),交于點(diǎn),,且,請(qǐng)直接寫出線段、、之間的關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文化用品商店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種書包進(jìn)行銷售,經(jīng)調(diào)查,乙書包的單價(jià)比甲書包貴元,用元購(gòu)進(jìn)乙書包的個(gè)數(shù)與用元購(gòu)進(jìn)甲書包的個(gè)數(shù)相等.

1)求甲、乙兩種書包的進(jìn)價(jià)分別為多少元?

2)商戶購(gòu)進(jìn)甲、乙兩種書包共個(gè)進(jìn)行試銷,其中甲書包的個(gè)數(shù)不少于個(gè),且甲書包的個(gè)數(shù) 倍不大于乙書包的個(gè)數(shù),已知甲書包的售價(jià)為/個(gè),乙書包的售價(jià)為/個(gè),且 全部售出,設(shè)購(gòu)進(jìn)甲書包個(gè),求該商店銷售這批書包的利潤(rùn)之間的函數(shù)關(guān)系式,并 寫出的取值范圍;

3)在(2)的條件下,該店將個(gè)書包全部售出后,使用所獲的利潤(rùn)又購(gòu)進(jìn)個(gè)書包捐贈(zèng)給 貧困地區(qū)兒童,這樣該商店這批書包共獲利元.請(qǐng)求出該店第二次進(jìn)貨所選用的進(jìn)貨方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案