【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)為“理想有理數(shù)對”,記為,如:數(shù)對、都是“理想有理數(shù)對”.
(1)數(shù)對、中是“理想有理數(shù)對”的是______;
(2)若是“理想有理數(shù)對”,求a的值;
(3)若是“理想有理數(shù)對”,則______“理想有理數(shù)對”(填“是”、“不是”或“不確定”);
(4)請再寫出一對符合條件的“理想有理數(shù)對”.(不能與題目中已有的數(shù)對重復).
【答案】(1);(2);(3)不是;(4).
【解析】
(1)根據(jù)“理想有理數(shù)對”的定義,計算判斷;
(2)根據(jù)“理想有理數(shù)對”的定義列方程求解;
(3)先由是“理想有理數(shù)對”得出關系式,再判斷是否滿足“理想有理數(shù)對”的定義;
(4)根據(jù)(3)中得出的m與n的關系式,取m=6,可得到n的值.
解:(1)因為,所以不是“理想有理數(shù)對”,
因為,所以是“理想有理數(shù)對”.
(2)因為是“理想有理數(shù)對”,所以,解得
(3)因為是“理想有理數(shù)對”,所以
因為,
所以,所以不是“理想有理數(shù)對”
(4)由(3)中是“理想有理數(shù)對”,滿足
取m=6,則,解得
所以是“理想有理數(shù)對”.
科目:初中數(shù)學 來源: 題型:
【題目】已知,、在數(shù)軸上對應的數(shù)分別用、表示,且.
(1)數(shù)軸上點表示的數(shù)是________,點表示的數(shù)是___________;
(2)若一動點從點出發(fā),以個單位長度秒速度由向運動;動點從原點出發(fā),以個單位長度秒速度向運動,點、同時出發(fā),點運動到點時兩點同時停止.設點運動時間為秒.
①若從到運動,則點表示的數(shù)為_______,點表示的數(shù)為___________(用含的式子表示)
②當為何值時,點與點之間的距離為個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE;
(2)若AB⊥AF,BC=12,EF=6,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每個小正方形的邊長都是單位1,直線a與直線b交于點O,△ABC的頂點均在格點上.
(1)△ABC向右平移 個單位長度到△A1B1C1位置;
(2)對△ABC分別作下列變換:
① 畫出△ABC關于直線a對稱的△A2B2C2;
② 將△ABC繞點O旋轉180°,畫出旋轉后的△A3B3C3;
(3)在△A1B1C1,△A2B2C2,△A3B3C3中,
① △ 與△ 成軸對稱,對稱軸是直線 ;
② △ 與△ 成中心對稱,并在圖中標出對稱中心D的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上.若PM=3cm,PN=4cm,MN=4.5cm,則線段QR的長為( )
A.4.5 B.5.5 C.6.5 D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料
材料1:對稱,也許是中國人最喜歡的。建筑師梁思成曾說過:“無論東方、西方,再沒有一個民族對中軸對稱線如此鐘愛與恪守。”放眼中國的建筑,無論是宮殿、廟宇、亭臺、樓閣、園林無不有著對稱之美。數(shù)學世界也里有一些正整數(shù)你無論從左往右看,還是從右往左看,數(shù)字都是完全一樣的,例如:11、101、2332、1234321、…,像這樣的數(shù)我們叫它“對稱數(shù)”.
材料2:如果一個三位數(shù),滿足a+b+c=8,我們就稱這個三位數(shù)為“發(fā)財數(shù)”.
(1)請直接寫出既是“對稱數(shù)”又是“發(fā)財數(shù)”的所有三位數(shù);
(2)一個三位“對稱數(shù)”十位數(shù)字為7,它的各數(shù)位上的數(shù)字之和是一個自然數(shù)的平方,求這個三位數(shù)(請寫出必要的推理過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t為何值時,△BCP為等腰三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從①,②,③三個條件中選出兩個作為已知條件,另一個作為結論可以組成3個命題.
(1)這三個命題中,真命題的個數(shù)為________;
(2)選擇一個真命題,并且證明.(要求寫出每一步的依據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上對應的數(shù)分別為a,b,且點A在點B的左邊,|a|=10,a+b=80,ab<0.
(1)求出a,b的值;
(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動.
①設兩只電子螞蟻在數(shù)軸上的點C相遇,求出點C對應的數(shù)是多少?
②經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距20個單位長度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com