【題目】如圖,矩形ABCD中,OAC的中點,過點O的直線分別與AB,CD交于點E,F,連接BFAC于點M,連接DE,BO.若∠COB60°,FOFC,則下列結(jié)論:①FBOCOMCM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MBOE32.其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】連接BD,

∵四邊形ABCD是矩形,

∴AC=BD,AC、BD互相平分,

∵OAC中點,

∴BD也過O點,

∴OB=OC,

∵∠COB=60°,OB=OC,

∴△OBC是等邊三角形,

∴OB=BC=OC,∠OBC=60°,

在△OBF與△CBF中, ,

∴△OBF≌△CBF(SSS),

∴△OBF與△CBF關(guān)于直線BF對稱,

∴FB⊥OC,OM=CM;

∴①正確,

∵∠OBC=60°,

∴∠ABO=30°,

∵△OBF≌△CBF,

∴∠OBM=∠CBM=30°,

∴∠ABO=∠OBF,

∵AB∥CD,

∴∠OCF=∠OAE,

∵OA=OC,

易證△AOE≌△COF,

∴OE=OF,

∴OB⊥EF,

∴四邊形EBFD是菱形,

∴③正確,

∵△EOB≌△FOB≌△FCB,

∴△EOB≌△CMB錯誤.

∴②錯誤,

∵∠OMB=∠BOF=90°,∠OBF=30°,

MB=OF=,

∵OE=OF,

∴MB:OE=3:2,

∴④正確;

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個有理數(shù)的積是正數(shù),和也是正數(shù),那么這兩個有理數(shù)( )
A.同號,且均為負數(shù);
B.異號,且正數(shù)的絕對值比負數(shù)的絕對值大;
C.同號,且均為正數(shù);
D.異號,且負數(shù)的絕對值比正數(shù)的絕對值大;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,AB=8,點D為AB的中點,若直角MDN繞點D旋轉(zhuǎn),分別交AC于點E,交BC于點F,則下列說法正確的有( 。

①AE=CF;②EC+CF=;③DE=DF;

A. ①② B. ①③ C. ①②③ D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)全民閱讀號召,某校在七年級800名學(xué)生中隨機抽取100名學(xué)生,對概念機學(xué)生在2015年全年閱讀中外名著的情況進行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補全條形統(tǒng)計圖并估計該校七年級全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(  )

A. x3x32x3B. xx3x3C. x3x2x6D. x3x4x7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準備進行如下操作試驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.

(1)利用尺規(guī),以AB為直徑作⊙O,交BC于點D;(保留作圖痕跡,不寫作法)

(2)在(1)所作的圖形中,求證:AC2=CDCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國水資源比較缺乏,人均水量約為世界人均水量的四分之一,其中西北地區(qū)缺水尤為嚴重.一村民為了蓄水,他把一塊矩形白鐵皮四個角各切去一個同樣大小的小正方形后制作一個無蓋水箱用于接雨水.已知白鐵皮的長為280cm,寬為160cm(如圖).

(1)若水箱的底面積為16000cm2,請求出切去的小正方形邊長;

(2)對(1)中的水箱,若盛滿水,這時水量是多少升?(注:1升水=1000cm3水)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列下列命題是真命題的是(

A. 過一點有且只有一條直線與已知直線垂直

B. 相等的兩個角一定是對頂角

C. 將一根細木條固定在墻上,只需要一根釘子

D. 同角的余角相等

查看答案和解析>>

同步練習(xí)冊答案