【題目】A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如下表和圖①:
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 | 80 | 85 |
(1)請將表格和圖①中的空缺部分補充完整;
(2)競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖②(沒有棄權(quán)票,每名學生只能推薦一人),請計算每人的得票數(shù);
(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4∶3∶3的比確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當選.
【答案】(1)90, (2)105票,120票,75票 (3)92.5分,98分,84分,B當選
【解析】
①根據(jù)條形統(tǒng)計圖找出A的口試成績,填寫表格即可;找出C的筆試成績,補全條形統(tǒng)計圖即可;
②由300分別乘以扇形統(tǒng)計圖中各學生的百分數(shù)即可計算每人的得票數(shù);
③根據(jù)加權(quán)平均數(shù)的計算方法計算即可,同時要注意各自所占比重.
(1) 由條形統(tǒng)計圖得:A同學的口試成績?yōu)?/span>90;
補全統(tǒng)計圖如圖所示.
(2)候選人A的得票數(shù):300×35%=105(票),
候選人B的得票數(shù):300×40%=120(票),
候選人C的得票數(shù):300×25%=75(票).
(3)由題意可知,三位候選人的最后成績分別為:
A:=92.5(分),
B:=98(分),
C:=84(分),
因為候選人B的最后成績最高,所以候選人B能當選.
故答案為:(1)90, (2)105票,120票,75票 (3)92.5分,98分,84分,B當選.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對稱的圖形△A1B1C1;
②將△A1B1C1向右平移7個單位得到△A2B2C2.
(2)回答下列問題:
①△A2B2C2中頂點B2坐標為 .
②若P(a,b)為△ABC邊上一點,則按照(1)中①、②作圖,點P對應(yīng)的點P2的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個正比例函數(shù)y1=k1x的圖象與一個一次函數(shù)y2=k2x+b的圖象相交于點A(3,4),且一次函數(shù)y2的圖像與y軸相交于點B(0,—5),與x軸交于點C.
(1)判斷△AOB的形狀并說明理由;
(2)請寫出當y1>y2時x的取值范圍;
(3)若將直線AB繞點A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;
(4)在x軸上求一點P使△POA為等腰三角形,請直接寫出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知l1∥l2,直線l1經(jīng)過原點O,直線l2對應(yīng)的函數(shù)表達式為,點A在直線l2上,AB⊥l1,垂足為B,則線段AB的長為( )
A. 4 B. 6 C. 8 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點A(2,0)和點B,與y軸交于點C,頂點為點D,對稱軸為直線x=﹣1,點E為線段AC的中點,點F為x軸上一動點.
(1)直接寫出點B的坐標,并求出拋物線的函數(shù)關(guān)系式;
(2)當點F的橫坐標為﹣3時,線段EF上存在點H,使△CDH的周長最小,請求出點H,使△CDH的周長最小,請求出點H的坐標;
(3)在y軸左側(cè)的拋物線上是否存在點P,使以P,F(xiàn),C,D為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根,求m的取值范圍;寫出一個滿足條件的m的值,并求此方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線l1:y=2x+1
(1)若將直線l1平移,使之經(jīng)過點(1,-5),求平移后直線的解析式;
(2)若直線l2:y=x+m與直線l1的交點在第二象限,求m的取值范圍;
(3)如圖,直線y=x+b與直線y=nx+2n(n≠0)的交點的橫坐標為-5,求關(guān)于x的不等式組0<nx+2n<x+b的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com