【題目】如圖,于點,于點,平分交于點,點為線段延長線上一點,.則下列結論:①;②;③;④若,則,正確的有:________.(只填序號)
【答案】①②③.
【解析】
依據(jù)AB⊥BC于點B,DC⊥BC于點C,即可得到AB∥CF,進而得出,∠BAF+∠F=180°,再根據(jù)∠BAF=∠EDF,即可得出ED∥AF,依據(jù)三角形外角性質以及角平分線的定義,即可得到∠DAF=∠F.
解:如圖,
∵AB⊥BC于點B,DC⊥BC于點C,
∴∠B+∠C=180°,
∴AB∥CF,
∴∠BAF+∠F=180°,(①正確),
又∵∠BAF=∠EDF,
∴∠EDF+∠F=180°,
∴ED∥AF(②正確),
∴∠ADE=∠DAF,∠EDC=∠F,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠DAF=∠F(③正確);
若,條件不足證不到,所以④不正確.
故答案是:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結論:①△DEF≌△DEC;②S△ABE = S△ADF;③AF=AB;④BE=AF.其中正確的結論是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,∠D=60°,AB=4,E為邊BC上的動點,連接AE,作AE的垂直平分線GF交直線CD于F點,垂足為點G,則線段GF的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,一次函數(shù)y=kx﹣6(k≠0)的圖象與y軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點B(4,b).
(1)b= ;k= ;
(2)點C是線段AB上一點,過點C且平行于y軸的直線l交該反比例函數(shù)的圖象于點D,連接OC,OD,BD,若四邊形OCBD的面積S四邊形OCBD=,求點C的坐標;
(3)將第(2)小題中的△OCD沿射線AB方向平移一定的距離后,得到△O'C'D',若點O的對應點O'恰好落在該反比例函數(shù)圖象上(如圖2),求此時點D的對應點D'的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上有三點A、B、C,若用AB表示A、B兩點的距離,AC表示A、C兩點的距離,且AB=AC,點A、點C對應的數(shù)是分別是a、c,且|a+40|+|c﹣20|=0.
(1)求BC的長.
(2)若點P、Q分別從A、C兩點同時出發(fā)向左運動,速度分別為2個單位長度每秒、5個單位長度每秒,則運動了多少秒時,Q到B的距離與P到B的距離相等?
(3)若點P、Q仍然以(2)中的速度分別從A、C兩點同時出發(fā)向左運動,2秒后,動點R從A點出發(fā)向右運動,點R的速度為1個單位長度每秒,點M為線段PR的中點,點N為線段RQ的中點,點R運動了多少秒時恰好滿足MN+AQ=31;并求出此時R點所對應的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學著說點理:補全證明過程:
如圖,已知,,垂足分別為,,,試證明:.請補充證明過程,并在括號內填上相應的理由.
證明:∵,(已知)
∴(___________________),
∴(___________________),
∴________(___________________).
又∵(已知),
∴(___________________),
∴________(___________________),
∴(___________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.
(1)求該二次函數(shù)的解析式;
(2)設該拋物線的頂點為D,求△ACD的面積;
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暖羊羊有5張寫著不同數(shù)字的卡片,請你按要求選擇卡片,完成下列各問題:
(1)從中選擇兩張卡片,使這兩張卡片上數(shù)字的乘積最大.
這兩張卡片上的數(shù)字分別是 ,積為 _.
(2)從中選擇兩張卡片,使這兩張卡片上數(shù)字相除的商最。
這兩張卡片上的數(shù)字分別是 ,商為 .
(3)從中選擇4張卡片,每張卡片上的數(shù)字只能用一次,選擇加、減、乘、除中的適當方法(可加括號),使其運算結果為24,寫出運算式子.(寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是﹣1,求另一個根及 k 值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com