【題目】如圖,.①以點(diǎn)為圓心,長為半徑畫弧,分別交、于點(diǎn)、;②在分別以、為圓心,長為半徑畫弧,兩弧交于點(diǎn);③連結(jié)、,則四邊形的面積為( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?
(2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形中,是邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)、、分別是、、的中點(diǎn).
(1)求證:.
(2)若,當(dāng)四邊形是正方形時(shí),求矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】義潔中學(xué)計(jì)劃從榮威公司購買A、B兩種型號(hào)的小黑板,經(jīng)洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元.
(2)根據(jù)義潔中學(xué)實(shí)際情況,需從榮威公司購買A、B兩種型號(hào)的小黑板共60塊,要求購買A、B兩種型號(hào)小黑板的總費(fèi)用不超過5240元.并且購買A型小黑板的數(shù)量應(yīng)大于購買A、B種型號(hào)小黑板總數(shù)量的.請(qǐng)你通過計(jì)算,求出義潔中學(xué)從榮威公司購買A、B兩種型號(hào)的小黑板有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅旗連鎖超市準(zhǔn)備購進(jìn)甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進(jìn)價(jià)和售價(jià)如表.已知:用2000元購進(jìn)甲種袋裝食品的數(shù)量與用1600元購進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(jià)(元/袋) | ||
售價(jià)(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購進(jìn)的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價(jià)-進(jìn)價(jià))不少于4800元,且不超過4900元,問該超市有幾種進(jìn)貨方案?
(3)在(2)的條件下,該超市如果對(duì)甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價(jià)格不變.那么該超市要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,若D為線段BC中點(diǎn),線段AD關(guān)于直線AB的對(duì)稱線段為線段AE,連接DE,求∠BDE的度數(shù);
(2)若點(diǎn)D為線段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補(bǔ)全圖形;
②小玉通過觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過程中,恒有CD=BE.請(qǐng)幫助小玉證明CD=BE.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在,,以為圓心,任意長為半徑畫弧,分別交,于點(diǎn),,再分別以,,為圓心,大于長為半徑畫弧,兩弧交于點(diǎn),作弧線,交于點(diǎn).已知,,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時(shí),求y的取值范圍;
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com