【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.
(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.
【答案】(1),(2)
【解析】
解:(1)畫樹狀圖得:
∵總共有9種等可能情況,每人獲勝的情形都是3種,
∴兩人獲勝的概率都是。
(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:
∵總共有9種等可能情況,當出現(xiàn)(勝,勝)或(負,負)這兩種情形時,贏家產(chǎn)生,
∴兩局游戲能確定贏家的概率為:。
(1)根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案。
(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.
(1)求點A、B的坐標;
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解黔東南州某縣2013屆中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.
成績分組 | 組中值 | 頻數(shù) |
25≤x<30 | 27.5 | 4 |
30≤x<35 | 32.5 | m |
35≤x<40 | 37.5 | 24 |
40≤x<45 | a | 36 |
45≤x<50 | 47.5 | n |
50≤x<55 | 52.5 | 4 |
(1)求a、m、n的值,并補全頻數(shù)分布直方圖;
(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AP,CP分別平分∠BAC,∠ACD,∠P=90°,設∠BAP=α.
(1)用α表示∠ACP;
(2)求證:AB∥CD;
(3)若AP∥CF,求證:FC平分∠DCE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,,,是對角線,于點,于點
(1)如圖1,求證:
(2)如圖2,當時,連接、,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形的面積都等于四邊形面積的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑;
(3)在(2)的條件下,若點B等分半圓CD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為軸上一個動點,
(1)如圖1,當,且按逆時針方向排列,求點的坐標.
(圖1)
(2)如圖2,當,且按順時針方向排列,連交軸于,求證:
(圖2)
(3)如圖3,m>2,且按順時針方向排列,若兩點關于直線的的對稱點,畫出圖形并用含的式子表示的面積
圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(點A在點B左側),與y軸交于點C.
(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;
(3)在(2)的條件下,點P為拋物線對稱軸上的一點,則PA+PC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com