【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過(guò)點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(B、C不重合).連接CB,CP.
(1)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)m>1時(shí),連接CA,問(wèn)m為何值時(shí)CA⊥CP?
(3)過(guò)點(diǎn)P作PE⊥PC且PE=PC,問(wèn)是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并定出相對(duì)應(yīng)的點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:當(dāng)m=3時(shí),y=﹣x2+6x
令y=0得﹣x2+6x=0
∴x1=0,x2=6,
∴A(6,0)
當(dāng)x=1時(shí),y=5
∴B(1,5)
∵拋物線y=﹣x2+6x的對(duì)稱軸為直線x=3
又∵B,C關(guān)于對(duì)稱軸對(duì)稱
∴BC=4
(2)
解:連接AC,過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)
由已知得∠ACP=∠BCH=90°
∴∠ACH=∠PCB
又∵∠AHC=∠PBC=90°
∴△ACH∽△PCB,
∴ ,
∵拋物線y=﹣x2+2mx的對(duì)稱軸為直線x=m,其中m>1,
又∵B,C關(guān)于對(duì)稱軸對(duì)稱,
∴BC=2(m﹣1),
∵B(1,2m﹣1),P(1,m),
∴BP=m﹣1,
又∵A(2m,0),C(2m﹣1,2m﹣1),
∴H(2m﹣1,0),
∴AH=1,CH=2m﹣1,
∴ ,
∴m=
(3)
解:∵B,C不重合,∴m≠1,
(Ⅰ)當(dāng)m>1時(shí),BC=2(m﹣1),PM=m,BP=m﹣1,
(i)若點(diǎn)E在x軸上(如圖1),
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,
在△BPC和△MEP中,
,
∴△BPC≌△MEP,
∴BC=PM,
∴2(m﹣1)=m,
∴m=2,此時(shí)點(diǎn)E的坐標(biāo)是(2,0);
(ii)若點(diǎn)E在y軸上(如圖2),
過(guò)點(diǎn)P作PN⊥y軸于點(diǎn)N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴m﹣1=1,
∴m=2,
此時(shí)點(diǎn)E的坐標(biāo)是(0,4);
(Ⅱ)當(dāng)0<m<1時(shí),BC=2(1﹣m),PM=m,BP=1﹣m,
(i)若點(diǎn)E在x軸上(如圖3),
易證△BPC≌△MEP,
∴BC=PM,
∴2(1﹣m)=m,
∴m= ,此時(shí)點(diǎn)E的坐標(biāo)是( ,0);
(ii)若點(diǎn)E在y軸上(如圖4),
過(guò)點(diǎn)P作PN⊥y軸于點(diǎn)N,
易證△BPC≌△NPE,
∴BP=NP=OM=1,
∴1﹣m=1,∴m=0(舍去),
綜上所述,當(dāng)m=2時(shí),點(diǎn)E的坐標(biāo)是(2,0)或(0,4),
當(dāng)m= 時(shí),點(diǎn)E的坐標(biāo)是( ,0).
【解析】(1)把m=3,代入拋物線的解析式,令y=0解方程,得到的非0解即為和x軸交點(diǎn)的橫坐標(biāo),再求出拋物線的對(duì)稱軸方程,進(jìn)而求出BC的長(zhǎng);(2)過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)由已知得∠ACP=∠BCH=90°,利用已知條件證明△ACH∽△PCB,根據(jù)相似的性質(zhì)得到: ,再用含有m的代數(shù)式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本題要分當(dāng)m>1時(shí),BC=2(m﹣1),PM=m,BP=m﹣1和當(dāng)0<m<1時(shí),BC=2(1﹣m),PM=m,BP=1﹣m,兩種情況分別討論,再求出滿足題意的m值和相對(duì)應(yīng)的點(diǎn)E坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)⑴班想買一些運(yùn)動(dòng)器材供班上同學(xué)陽(yáng)光體育活動(dòng)使用,班主任安排班長(zhǎng)去商店買籃球和排球,下面是班長(zhǎng)與售貨員的對(duì)話:
班長(zhǎng):阿姨,您好! 售貨員:同學(xué),你好,想買點(diǎn)什么?
⑴根據(jù)這段對(duì)話,你能算出籃球和排球的單價(jià)各是多少嗎?
⑵六一兒童節(jié)店里搞活動(dòng)有兩種套餐,1、套裝打折:五個(gè)籃球和五個(gè)排球?yàn)橐惶籽b,套裝打 八折:2、滿減活動(dòng):999 減 100,1999 減 200;兩種活動(dòng)不重復(fù)參與,學(xué)校需要 15個(gè)籃球,13 個(gè)排球作為獎(jiǎng)品,請(qǐng)問(wèn)如何安排購(gòu)買更劃算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)從四邊形的一個(gè)頂點(diǎn)出發(fā)可以畫(huà)_____條對(duì)角線,把四邊形分成了 個(gè)三角形;四邊形共有____條對(duì)角線.
(2)從五邊形的一個(gè)頂點(diǎn)出發(fā)可以畫(huà)_____條對(duì)角線,把五邊形分成了 個(gè)三角形;五邊形共有____條對(duì)角線.
(3)從六邊形的一個(gè)頂點(diǎn)出發(fā)可以畫(huà)_____條對(duì)角線,把六邊形分成了 個(gè)三角形;六邊形共有____條對(duì)角線.
(4)猜想:①?gòu)?/span>100邊形的一個(gè)頂點(diǎn)出發(fā)可以畫(huà)_____條對(duì)角線,把100邊形分成了 個(gè)三角形;100邊形共有___條對(duì)角線.②從n邊形的一個(gè)頂點(diǎn)出發(fā)可以畫(huà)_____條對(duì)角線,把n分成了 個(gè)三角形;n邊形共有_____條對(duì)角線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀,再解決問(wèn)題,例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴n=3,m=﹣3
(1)若x2+2y2﹣2xy+4y+4=0,求xy的值
(2)已知△ABC的三邊長(zhǎng)a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請(qǐng)問(wèn)△ABC是怎樣形狀的三角形?
(3)根據(jù)以上的方法是說(shuō)明代數(shù)式:x2+4x+y2﹣8y+21的值一定是一個(gè)正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)C.
(1)若點(diǎn)A的坐標(biāo)為(1,2),請(qǐng)你在給出的坐標(biāo)系中畫(huà)出ΔABC,設(shè)AB與y軸的交點(diǎn)為D,求的值;
(2)若點(diǎn)A的坐標(biāo)為(a,b)(ab≠0),判斷ΔABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對(duì)的邊分別是a、b、c,在下列關(guān)系中,不屬于直角三角形的是( )
A. b2=a2﹣c2 B. a:b:c=3:4:5
C. ∠A﹣∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,點(diǎn)O是AB邊上一點(diǎn),以O(shè)A為半徑作⊙O,與邊AC交于點(diǎn)D,連接BD,若∠DBC=∠A,求證:BD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:已知Q、K、R為數(shù)軸上三點(diǎn),若點(diǎn)K到點(diǎn)Q的距離是點(diǎn)K到點(diǎn)R的距離的2倍,我們就稱點(diǎn)K是有序點(diǎn)對(duì)的好點(diǎn).
根據(jù)下列題意解答問(wèn)題:
(1)如圖1,數(shù)軸上點(diǎn)Q表示的數(shù)為1,點(diǎn)P表示的數(shù)為0,點(diǎn)K表示的數(shù)為1,點(diǎn)R表示的數(shù)為2.因?yàn)辄c(diǎn)K到點(diǎn)Q的距離是2,點(diǎn)K到點(diǎn)R的距離是1,所以點(diǎn)K是有序點(diǎn)對(duì)的好點(diǎn),但點(diǎn)K不是有序點(diǎn)對(duì)的好點(diǎn).同理可以判斷:點(diǎn)P是不是有序點(diǎn)對(duì)的好點(diǎn);
(2)如圖2,數(shù)軸上點(diǎn)M表示的數(shù)為-1,點(diǎn)N表示的數(shù)為5,點(diǎn)H表示的數(shù)為x,若點(diǎn)H是有序點(diǎn)對(duì)的好點(diǎn),求x的值;
(3)如圖3,數(shù)軸上點(diǎn)A表示的數(shù)為20,點(diǎn)B表示的數(shù)為10.現(xiàn)有一只電子螞蟻C從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度向左運(yùn)動(dòng)t秒(t>0).當(dāng)點(diǎn)A、B、C中恰有一個(gè)點(diǎn)為其余兩有序點(diǎn)對(duì)的好點(diǎn),直接寫(xiě)出t的所有可能的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com