【題目】已知,在中,,是邊上的一個(gè)動(dòng)點(diǎn),將沿所在直線折疊,使點(diǎn)落在點(diǎn)處.
(1)如圖①,若點(diǎn)是的中點(diǎn),連接.求證:四邊形是平行四邊形;
(2)如圖②,若,求的值.
圖① 圖②
【答案】(1)見(jiàn)解析(2)
【解析】分析:(1)證明DE∥BC,DE=BC即可;
(2) 如圖,作DF⊥AB于F,EM⊥AC于M,延長(zhǎng)BD交EA于G.設(shè)BD=AD=x,則CD=8-x,在Rt△BDC中,可得x2=(8-x)2+42,推出x=5,在中,,故,由,得,由∽,可得,由此求出AE,由∽,可得,由此求出AM,可得MC , 易證四邊形是矩形,由此即可解決問(wèn)題.
詳解:(1)證明:在中,,點(diǎn)是的中點(diǎn),
∴
∴是等腰直角三角形,
∴.
由折疊得:,
∴,
∴,
∴,
又,
∴四邊形是平行四邊形;
(2)如圖
連接,分別過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),
作,交的延長(zhǎng)線于點(diǎn),延長(zhǎng)交于點(diǎn),則為等腰三角形,.
設(shè),則,
在中,由勾股定理得:,
∴,
∴,即.
在中,,
∴,
∵,
∴,
在中, ,
由∽,可得,
∴
∴,又.
∴,
由∽,可得
∴ ∴,
∴,
易證四邊形是矩形,
∴. 又∵
∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知自行車(chē)與摩托車(chē)從甲地開(kāi)往乙地,OA與BC分別表示它們與甲地距離s(千米)與時(shí)間t(小時(shí))的關(guān)系,則:
(1)摩托車(chē)每小時(shí)走 千米,自行車(chē)每小時(shí)走 千米;
(2)自行車(chē)出發(fā)后多少小時(shí),它們相遇?
(3)摩托車(chē)出發(fā)后多少小時(shí),他們相距10千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車(chē)從甲地出發(fā)以50 km/h的速度勻速駛往乙地,行駛1 h后,一輛轎車(chē)從乙地出發(fā)沿同一條路勻速駛往甲地.轎車(chē)行駛0.8 h后兩車(chē)相遇.圖中折線ABC表示兩車(chē)之間的距離y(km)與貨車(chē)行駛時(shí)間x(h)的函數(shù)關(guān)系.
(1)甲乙兩地之間的距離是__________ km,轎車(chē)的速度是_________ km/h;
(2)求線段BC所表示的函數(shù)表達(dá)式;
(3)在圖中畫(huà)出貨車(chē)與轎車(chē)相遇后的y(km)與x(h)的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年全國(guó)兩會(huì)民生話題成為社會(huì)焦點(diǎn).合肥市記者為了了解百姓“兩會(huì)民生話題”的聚焦點(diǎn),隨機(jī)調(diào)查了合肥市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行整理.繪制了如圖所示的不完整的統(tǒng)計(jì)圖表.
組別 | 焦點(diǎn)話題 | 頻數(shù)(人數(shù)) |
A | 食品安全 | 80 |
B | 教育醫(yī)療 | m |
C | 就業(yè)養(yǎng)老 | n |
D | 生態(tài)環(huán)保 | 120 |
E | 其他 | 60 |
請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:
(1)填空:m= ,n= .扇形統(tǒng)計(jì)圖中E組所占的百分比為 %;
(2)合肥市人口現(xiàn)有750萬(wàn)人,請(qǐng)你估計(jì)其中關(guān)注D組話題的市民人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機(jī)抽查一人,則此人關(guān)注C組話題的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形.請(qǐng)解決下列問(wèn)題:
(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C= °,∠D= °
(2)在探究等對(duì)角四邊形性質(zhì)時(shí):
小紅畫(huà)了一個(gè)如圖2所示的等對(duì)角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請(qǐng)你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以AB和BC為邊各畫(huà)一個(gè)等對(duì)角四邊形ABCD.
要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫(huà)的兩個(gè)四邊形不全等.
(4)已知:在等對(duì)角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB于點(diǎn)H.
(1)求證:四邊形AGPH是矩形;
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,GH的長(zhǎng)度是否存在最小值?若存在,請(qǐng)求出最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將矩形折疊,使落在對(duì)角線上,折痕為,點(diǎn)落在點(diǎn) 處,若,則 ;
(2)小麗手中有一張矩形紙片,,.她準(zhǔn)備按如下兩種方式進(jìn)行折疊:
①如圖2,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為,若,求的長(zhǎng);
②如圖3,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn),分別落在,處,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次禁毒宣傳活動(dòng)中,某執(zhí)勤小組乘車(chē)沿東西向公路進(jìn)行安全維護(hù),如果約定向東為正,向西為負(fù),行駛記錄如下(單位:米):+18,-9,+7,-14,-3,+13,-8,-6,+15,+6.
(1)執(zhí)勤過(guò)程中,最遠(yuǎn)處離出發(fā)點(diǎn)有多遠(yuǎn)?
(2)若汽車(chē)行駛每千米耗油量為升,求這次執(zhí)勤的汽車(chē)共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com