【題目】如圖,點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰△AOC和等腰△BOD,OA=OC,OB=OD,∠AOC與∠BOD都是銳角,且∠AOC=∠BOD ,AD與BC交于點(diǎn)P.
(1)試說明CB=AD;
(2)若∠COD =80°,求∠APB的度數(shù).
【答案】(1)證明見解析;(2)∠APB=130°
【解析】
(1)證明∠AOD=∠COB,根據(jù)“SAS”證明全等;
(2)由∠COD=80°,∠AOC=∠BOD,求出∠AOC,根據(jù)△AOD≌△COB,得到∠OAD=∠OCB,由對頂角相等∠CMP=∠AMO,得到∠CPM=∠AOC=47°,根據(jù)鄰補(bǔ)角求出∠APB.
(1)因?yàn)椤?/span>AOC=∠BOD
所以∠AOD=∠COB
在△AOD 與△COB中
因?yàn)?/span>OA=OC, ∠AOD=∠COB ,OD =OB
所以△AOD≌△COB
所以CB=AD
(2)因?yàn)椤?/span>COD=80°
所以∠AOC=∠BOD=50°
所以∠COB=130°
在△APB中
∠APB+∠1+∠2=180°
在△COB中
∠COB+∠3+∠2=180°
因?yàn)?/span>△AOD≌△COB
所以∠1=∠3
所以∠APB=∠COB
所以∠APB=130°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園安全與每個(gè)師生、家長和社會(huì)有著切身的關(guān)系.某校教學(xué)樓共五層,設(shè)有左、右兩個(gè)樓梯口,通常在放學(xué)時(shí),若持續(xù)不正常,會(huì)導(dǎo)致等待通過的人較多,發(fā)生擁堵,從而出現(xiàn)不安全因素.通過觀察發(fā)現(xiàn)位于教學(xué)樓二、三樓的七年級學(xué)生從放學(xué)時(shí)刻起,經(jīng)過單個(gè)樓梯口等待人數(shù)按每分鐘12人遞增,6分鐘后經(jīng)過單個(gè)樓梯口等待人數(shù)按每分鐘12人遞減;位于四、五樓的八年級學(xué)生從放學(xué)時(shí)刻起,經(jīng)過單個(gè)樓梯口等待人數(shù)y2與時(shí)間為t(分)滿足關(guān)系式y(tǒng)2=﹣4t2+48t﹣96(0≤t≤12).若在單個(gè)樓梯口等待人數(shù)超過80人,就會(huì)出現(xiàn)安全隱患.
(1)試寫出七年級學(xué)生在單個(gè)樓梯口等待的人數(shù)y1(人)和從放學(xué)時(shí)刻起的時(shí)間t(分)之間的函數(shù)關(guān)系式,并指出t的取值范圍.
(2)若七、八年級學(xué)生同時(shí)放學(xué),試計(jì)算等待人數(shù)超過80人所持續(xù)的時(shí)間.
(3)為了避免出現(xiàn)安全隱患,該校采取讓七年級學(xué)生提前放學(xué)措施,要使單個(gè)樓梯口等待人數(shù)不超過80人,則七年級學(xué)生至少比八年級提前幾分鐘放學(xué)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯(cuò)誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長線或反向延長線上時(shí),(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形OABC中,已知點(diǎn)A、C兩點(diǎn)的坐標(biāo)為A (,),C (2,0).
(1)求點(diǎn)B的坐標(biāo).
(2)將平行四邊形OABC向左平移個(gè)單位長度,求所得四邊形A′B′C′O′四個(gè)頂點(diǎn)的坐標(biāo).
(3)求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=15,點(diǎn)E是AD邊上一點(diǎn),連接BE,把△ABE沿BE折疊,使點(diǎn)A落在點(diǎn)A′處,點(diǎn)F是CD邊上一點(diǎn),連接EF,把△DEF沿EF折疊,使點(diǎn)D落在直線EA′上的點(diǎn)D′處,當(dāng)點(diǎn)D′落在BC邊上時(shí),AE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com