【題目】如圖①,在正方形ABCD中,點P沿邊DA從點D開始向點A以1cm/s的速度移動;同時,點Q沿邊AB、BC從點A開始向點C以2cm/s的速度移動.當點P移動到點A時,P、Q同時停止移動.設點P出發(fā)xs時,△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,則線段EF所在的直線對應的函數(shù)關系式為 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某海域有兩個海拔均為200米的海島A和海島B,一勘測飛機在距離海平面垂直高度為1100米的空中飛行,飛行到點C處時測得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達點D處,在D處測得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結BE交MN于點F.已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標;
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC切⊙O于點A,AD是⊙O的弦,OC⊥AD于F交⊙O于E,連接DE,BE,BD,AE.
(1)求證:∠C=∠BED;
(2)如果AB=10,tan∠BAD=,求AC的長;
(3)如果DE∥AB,AB=10,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃組織九年級師生去韶山舉行畢業(yè)聯(lián)歡活動.下面是年級組長李老師和小芳、小明同學有關租車問題的對話:
李老師:“平安客運公司有60座和45座兩種型號的客車可供租用,60座客車每輛每天的租金比45座的貴200元.”
小芳:“我們學校八年級師生昨天在這個客運公司租用4輛60座和2輛45座的客車到韶山參觀,一天的租金共計5000元.”
小明:“我們九年級師生租用5輛60座和1輛45座的客車正好坐滿.”
根據(jù)以上對話,解答下列問題:
(1)平安客運公司60座和45座的客車每輛每天的租金分別是多少元?
(2)按小明提出的租車方案,九年級師生到該公司租車一天,共需租金多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù):.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,經過點C的直線與AB的延長線交于點D,連接AC,BC,∠BCD=∠CAB.E是⊙O上一點,弧CB=弧CE,連接AE并延長與DC的延長線交于點F.
(1)求證:DC是⊙O的切線;
(2)若⊙O的半徑為3,sin∠D=,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A1,A2,A3,…,An是x軸上的點,且OA1=A1A2=A2A3=…=AnAn+1=1,分別過點A1,A2,A3,…,An+1作x軸的垂線交一次函數(shù)的圖象于點B1,B2,B3,…,Bn+1,連接A1B2,B1A2,A2B3,B2A3,…,AnBn+1,BnAn+1依次產生交點P1,P2,P3,…,Pn,則Pn的坐標是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com