【題目】如圖,在△ABC中,∠ABC=90°,將△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,連接AD,BE,延長BE交AD于點F.
(1)求證:∠DEF=∠ABF;
(2)求證:F為AD的中點;
(3)若AB=8,AC=10,且EC⊥BC,求EF的長.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)根據(jù)等角的余角相等證明即可;
(2)如圖1中,作AN⊥BF于N,DM⊥BF交BF的延長線于M,首先證明△ANB≌△DME,可得AN=DM,然后證明△AFN≌△DFM,求出AF=FD即可;(3)如圖2中,作AN⊥BF于N,DM⊥BF交BF的延長線于M,想辦法求出FM,EM即可.
(1)證明: ∵CB=CE,
∴∠CBE=∠CEB,
∵∠ABC=∠CED=90°,
∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,
∴∠DEF=∠ABF.
(2)證明:如圖1中,作AN⊥BF于N,DM⊥BF交BF的延長線于M.
∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,
∴△ANB≌△DME(AAS),
∴AN=DM,
∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,
∴△AFN≌△DFM(AAS),
∴AF=FD,即F為AD的中點;
(3)如圖2中,作AN⊥BF于N,DM⊥BF交BF的延長線于M.
在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,
∴BC=EC==6,
∵EC⊥BC,
∴∠BCE=∠ACD=90°,
∵AC=CD=10,
∴AD=10,
∴DF=AF=5,
∵∠MED=∠CEB=45°,
∴EM=MD=4,
在Rt△DFM中,FM==3,
∴EF=EM-FM=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是邊AC上的一個動點,連接MB,過點M作MB的垂線交AB于點N. 設(shè)AM=x cm,AN=y cm.(當(dāng)點M與點A或點C重合時,y的值為0)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1) 通過取點、畫圖、測量,得到了x與y的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AN=AM時,AM的長度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,的平分線交于點,平分.給出下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,則旋轉(zhuǎn)角度為( 。
A.30°B.60°C.90°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.
(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);
(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c的對稱軸為直線x=1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),且AB=4,又P是拋物線上位于第一象限的點,直線AP與y軸交于點D,與對稱軸交于點E,設(shè)點P的橫坐標(biāo)為t.
(1)求點A的坐標(biāo)和拋物線的表達(dá)式;
(2)當(dāng)AE:EP=1:2時,求點E的坐標(biāo);
(3)記拋物線的頂點為M,與y軸的交點為C,當(dāng)四邊形CDEM是等腰梯形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3…按照這樣的作法進(jìn)行下去,則點A20的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,小白遇到這樣一個問題:
如圖1,在等腰中,,,,求證;
在此問題的基礎(chǔ)上,老師補(bǔ)充:
過點作于點交于點,過作交于點,交于點,試探究線段,,之間的數(shù)量關(guān)系,并說明理由.
小白通過研究發(fā)現(xiàn),與有某種數(shù)量關(guān)系;
小明通過研究發(fā)現(xiàn),將三條線段中的兩條放到同一條直線上,即“截長補(bǔ)短”,再通過進(jìn)一步推理,可以得出結(jié)論.
閱讀上面材料,請回答下面問題:
(1)求證;
(2)猜想與的數(shù)量關(guān)系,并證明;
(3)探究線段,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.
⑴填空:∠ABC= °,AC= ;
⑵判斷:△ABC與△DEF是否相似,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com