【題目】已知:在以為原點(diǎn)的平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為點(diǎn),且經(jīng)過點(diǎn),,三點(diǎn).

1)求直線和該拋物線相應(yīng)的函數(shù)表達(dá)式;

2)如圖①,點(diǎn)為拋物線上的一個動點(diǎn),且在直線的上方,過點(diǎn)軸的平行線與直線交于點(diǎn),求的最大值.

3)如圖②,過點(diǎn)的直線交軸于點(diǎn),且軸,點(diǎn)是拋物線上,之間的一個動點(diǎn),直線,分別交于,當(dāng)點(diǎn)運(yùn)動時,是否為定值?若是,試求出該定值;若不是,請說明理由.

【答案】1;;(2;(3)是,的定值為18

【解析】

1)直接利用待定系數(shù)法即可求出直線OB的解析式,然后將拋物線的解析式設(shè)為兩點(diǎn)式,然后將點(diǎn)B的坐標(biāo)代入即可求出拋物線的解析式;

2)設(shè),則可表示出N的坐標(biāo),由MN的縱坐標(biāo)相同可得到st的關(guān)系式,然后利用二次函數(shù)的性質(zhì)求最大值即可;

3)設(shè)點(diǎn),則可表示出PQ,CQ,DQ,再利用相似三角形的性質(zhì)可用t分別表示出EFEG的長度,則可求出答案.

1)設(shè)直線OB的解析式為,

代入解析式中得,

解得 ,

∴直線OB解析式為;

∵拋物線經(jīng)過點(diǎn),

∴可設(shè)拋物線解析式為

∵拋物線經(jīng)過,

,

解得

∴拋物線解析式為 ;

2)設(shè),則N的坐標(biāo)為 ,

軸,

,

∴當(dāng)時,MN有最大值,最大值為 ;

3,理由如下:

過點(diǎn)P軸交x軸于點(diǎn)Q,

設(shè),則,

,

,

同理

,

∴當(dāng)P運(yùn)動時,為定值18

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為△ABC外接圓O的直徑,點(diǎn)P是線段CA延長線上一點(diǎn),點(diǎn)E在圓上且滿足PE2=PAPC,連接CE,AE,OE,OECA于點(diǎn)D

1)求證:△PAE∽△PEC;

2)求證:PEO的切線;

3)若∠B=30°,,求證:DO=DP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,熱氣球的探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角度數(shù)為α,看這棟樓底部C處的俯角度數(shù)為β,熱氣球A處與樓的水平距離為100m,則這棟樓的高度表示為(

A.100(tanα+tanβ)mB.100(sinα+sinβ)mC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年3月5日,我校組織全體學(xué)生參加了“走出校門,服務(wù)社會”的活動.九年級三班同學(xué)統(tǒng)計了該天本班學(xué)生打掃街道,去敬老院服務(wù)和到社區(qū)文藝演出的人數(shù),并做了如下直方圖和扇形統(tǒng)計圖.請根據(jù)同學(xué)所作的兩個圖形.解答:

(1)九年級三班有多少名學(xué)生;

(2)補(bǔ)全直方圖的空缺部分;

(3)若九年級有800名學(xué)生,估計該年級去敬老院的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD//BC,AB=CD=AD=5,,點(diǎn)O是邊BC上的動點(diǎn),以OB為半徑的與射線BA和邊BC分別交于點(diǎn)E和點(diǎn)M,聯(lián)結(jié)AM,作∠CMN=BAM,射線MN與邊AD、射線CD分別交于點(diǎn)FN

1)當(dāng)點(diǎn)E為邊AB的中點(diǎn)時,求DF的長;

2)分別聯(lián)結(jié)AN、MD,當(dāng)AN//MD時,求MN的長;

3)將繞著點(diǎn)M旋轉(zhuǎn)180°得到,如果以點(diǎn)N為圓心的都內(nèi)切,求的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線鈾交于,與軸交于拋物線的頂點(diǎn)為直線軸于

1)寫出的坐標(biāo)和直線的解析式;

2是線段上的動點(diǎn)(不與重合),軸于設(shè)四邊形的面積為,求之間的兩數(shù)關(guān)系式,并求的最大值;

3)點(diǎn)軸的正半軸上運(yùn)動,過軸的平行線,交直線交拋物線于連接,將沿翻轉(zhuǎn),的對應(yīng)點(diǎn)為.在圖2中探究:是否存在點(diǎn);使得恰好落在軸?若存在,請求出的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)為邊中點(diǎn),點(diǎn)在線段上運(yùn)動,點(diǎn)在線段上運(yùn)動,連接,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D在⊙O上,且BC=CD,CCEAD,AD延長線于E,交AB延長線于F點(diǎn),

1)求證:EF是⊙O的切線;

2)若AB=4ED,求cos∠ABC的值.

查看答案和解析>>

同步練習(xí)冊答案