【題目】如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點(diǎn)B作BC⊥AE于點(diǎn)C,在BC上截取CD=CE,連接AD、DE并延長(zhǎng)AD交BE于點(diǎn)P;
(1)求證:AD=BE;
(2)試說明AD平分∠BAE;
(3)如圖2,將△CDE繞著點(diǎn)C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.

【答案】
(1)解:∵BC⊥AE,∠BAE=45°,

∴∠CBA=∠CAB,

∴BC=CA,

在△BCE和△ACD中,

∴△BCE≌△ACD,

∴AD=BE.


(2)解:∵△BCE≌△ACD,

∴∠EBC=∠DAC,

∵∠BDP=∠ADC,

∴∠BPD=∠DCA=90°,

∵AB=AE,

∴AD平分∠BAE.


(3)解:AD⊥BE不發(fā)生變化.

如圖2,

∵△BCE≌△ACD,

∴∠EBC=∠DAC,

∵∠BFP=∠ACF,

∴∠BPF=∠ACF=90°,

∴AD⊥BE.


【解析】(1)利用SAS證明△BCE≌△ACD,根據(jù)全等三角形的對(duì)應(yīng)邊相等得到AD=BE.(2)根據(jù)△BCE≌△ACD,得到∠EBC=∠DAC,由∠BDP=∠ADC,得到∠BPD=∠DCA=90°,利用等腰三角形的三線合一,即可得到AD平分∠BAE;(3)AD⊥BE不發(fā)生變化.由△BCE≌△ACD,得到∠EBC=∠DAC,由對(duì)頂角相等得到∠BFP=∠ACF,根據(jù)三角形內(nèi)角和為180°,所以∠BPF=∠ACF=90°,即AD⊥BE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】往一個(gè)長(zhǎng)25m,寬11m的長(zhǎng)方體游泳池注水,水位每小時(shí)上升0.32m,
(1)寫出游泳池水深d(m)與注水時(shí)間x(h)的函數(shù)表達(dá)式;
(2)如果x(h)共注水y(m3),求y與x的函數(shù)表達(dá)式;
(3)如果水深1.6m時(shí)即可開放使用,那么需往游泳池注水幾小時(shí)?注水多少(單位:m3)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為(  )

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m+3,m)在直角坐標(biāo)系的x軸上,則點(diǎn)P的坐標(biāo)為( ).

A. (0,3) B. (-3,0) C. (3,0) D. (0,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在平面直角坐標(biāo)系中,直線l與y軸相交于點(diǎn)A(0,m)其中m<0,與x軸相交于點(diǎn)B(4,0).拋物線y=ax2+bx(a>0)的頂點(diǎn)為F,它與直線l相交于點(diǎn)C,其對(duì)稱軸分別與直線l和x軸相交于點(diǎn)D和點(diǎn)E.

(1)設(shè)a=,m=﹣2時(shí),

①求出點(diǎn)C、點(diǎn)D的坐標(biāo);

②拋物線y=ax2+bx上是否存在點(diǎn)G,使得以G、C、D、F四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?如果存在,求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說明理由.

(2)當(dāng)以F、C、D為頂點(diǎn)的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時(shí),求拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列給出的各組線段的長(zhǎng)度中,能組成三角形的是( )

A. 4,56B. 6,815C. 5,712D. 3,713

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲、乙兩車分別從相距300(km)的M、N兩地同時(shí)出發(fā)相向而行,其中甲到達(dá)N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象.

1試求線段AB所對(duì)應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2當(dāng)它們行駛到與各自出發(fā)地距離相等時(shí),用了4.5h),求乙車的速度;

3在(2)的條件下,求它們?cè)谛旭偟倪^程中相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有 個(gè)選項(xiàng),第二道單選題有個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是__________.

)如果小明將“求助”留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老王以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克西瓜到市場(chǎng)銷售,在銷售了部分西瓜后,余下的每千克降價(jià)0.2元,全部售完,銷售金額與賣瓜的千克數(shù)之間的關(guān)系如圖所示,那么老王賺了( )

A.32元
B.36元
C.38元
D.44元

查看答案和解析>>

同步練習(xí)冊(cè)答案