【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程ykm)與小明離家時間xh)的函數(shù)圖象.已知媽媽駕車的速度是小明騎車速度的3倍.

1)求小明騎車的速度和在甲地游玩的時間;

2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?

3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

【答案】1,0.5h.(21.75,25km,(330km

【解析】

1)根據(jù)圖象可以求出小明在甲地游玩的時間,由速度=路程÷時間就可以求出小明騎車的速度;
2)直接運用待定系數(shù)法就可以求出直線BCDE的解析式,再由其解析式建立二元一次方程組,求出點F的坐標就可以求出結論;

3)設從媽媽追上小明的地點到乙地的路程為nkm),根據(jù)媽媽比小明早到10分鐘列出有關n的方程,求得n值即可.

1)小明騎車速度:,

在甲地游玩的時間是10.5=0.5h).

2)媽媽駕車速度:20×3=60km/h

設直線BC解析式為y=20x+b1,

把點B110)代入得b1=10

∴y=20x10

設直線DE解析式為y=60x+b2,把點D,0

代入得b2=80∴y=60x80…5分)

解得

交點F1.75,25).

答:小明出發(fā)1.75小時(105分鐘)被媽媽追上,此時離家25km

3)設從媽媽追上小明的地點到乙地的路程為nkm),

由題意得:

∴n=5

從家到乙地的路程為5+25=30km).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長方形紙片,沿對角線折疊,點的對應點為,相交于點,則下列結論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一年一度的國家學生體質測試中,金星中學對全校2000名男生的1000m測試成績進行了抽查,學校從初三年級抽取了一部分男生的成績,并繪制成統(tǒng)計表,繪制成頻數(shù)直方圖.

序號

范圍(單位:秒)

頻數(shù)

頻率

1

170<x≤200

5

0.1

2

200<x≤230

13

a

3

230<x≤260

15

0.3

4

260<x≤290

c

d

5

290<x≤320

5

0.1

6

320<x≤350

2

0.04

7

350<x≤380

2

0.04

合計

b

1.00

(1)在這個問題中,總體是什么?

(2)直接寫出a,b,c,d的值.

(3)補全頻數(shù)直方圖.

(4)初中畢業(yè)生體能測試項目成績評定標準是男生1000m不超過4′20″(即260秒)為合格,你能估計出該校初中男生的1000m的合格人數(shù)嗎?如果能,請求出合格的人數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a+b=1,ab=-1.

(1)計算S2;

(2)請閱讀下面計算S3的過程:

=

=

=

∵a+b=1,ab=-1,

_______.

你讀懂了嗎?請你先填空完成(2)中S3的計算結果;再計算S4;

(3)猜想并寫出, , 三者之間的數(shù)量關系(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關系計算S3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x2+(a+3)x+a+1=0是關于x的一元二次方程.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根為x1 ,x2 ,x12+x22=10,求實數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將直角三角形分割成一個正方形和兩對全等的直角三角形,在中,,,,;在正方形中,.

探究1

1)小明發(fā)現(xiàn)了求正方形邊長的方法:由題意可得,,因為,所以,解得

探究2

2)小亮發(fā)現(xiàn)了另一種求正方形邊長的方法:連接,利用可以得到的關系.請根據(jù)小亮的思路完成他的求解過程.

探究3

3)請結合小明和小亮得到的結論驗證勾股定理.(注:根據(jù)比例的基本性質,由可得

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知abc=2:3:4,2a+3b﹣2c=10,a﹣2b+3c的值

【答案】16.

【解析】試題根據(jù)比例的性質可設a=2kb=3k,c=4k,則利用2a+3b-2c=10得到4k+9k-8k=10,解得k=2,于是可求出a、b、c的值,然后計算a-2b+3c的值.

試題解析:∵abc=234,

a=2k,b=3k,c=4k,

2a+3b-2c=10,

∴4k+9k-8k=10,解得k=2

∴a=4,b=6,c=8,

∴a-2b+3c=4-12+24=16

考點:比例的性質.

型】解答
束】
24

【題目】計算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點關于x軸的對稱點和點關于y軸的對稱點相同,則點關于x軸對稱的點的坐標為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長城科技公司生產(chǎn)銷售一種電子產(chǎn)品,該產(chǎn)品總成本包括技術成本、制造成本、銷售成本三部分,經(jīng)核算,年該產(chǎn)品各部分成本所占比例約為.且年該產(chǎn)品的技術成本、制造成本分別為萬元、萬元.

確定的值,并求年產(chǎn)品總成本為多少萬元;

為降低總成本,該公司年及年增加了技術成本投入,確保這兩年技術成本都比前一年增加一個相同的百分數(shù),制造成本在這兩年里都比前一年減少一個相同的百分數(shù);同時為了擴大銷售量,年的銷售成本將在年的基礎上提高,經(jīng)過以上變革,預計年該產(chǎn)品總成本達到年該產(chǎn)品總成本的,求的值.

查看答案和解析>>

同步練習冊答案