【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)E.

(1)求拋物線的解析式;

(2)經(jīng)過B,C兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),求△PCD的面積;

(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)Mx軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.

【答案】(1) y=﹣x+2x+3;(2)1;(3)見解析.

【解析】

(1)由點(diǎn) A,C 的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn) B 的坐標(biāo),利用配方法可求出頂點(diǎn) E 的坐標(biāo),由點(diǎn) B,C 的坐標(biāo),利用待定系數(shù)法可求出直線 BC 的解析式, 利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn) D 的坐標(biāo),再利用三角形的面積公式即可求出當(dāng)點(diǎn) P 運(yùn)動(dòng)到點(diǎn) E 時(shí)PCD 的面積;(3)設(shè)點(diǎn) M 的坐標(biāo)為(m,0),點(diǎn) N 的坐標(biāo)為(1,n),分四邊形 CBMN 為平行四邊形、四邊形 CMNB 為平行四邊形及四邊形 CMBN 為平行四邊形三種情況,利用平行四邊形的性質(zhì)找出關(guān)于 m 的一元一次方程,解之即可得出結(jié)論.

(1)將 A(﹣1,0),C(0,3)代入 y=ax2+2x+c,得:

,解得: ,

∴拋物線的解析式為 y=﹣x2+2x+3.

(2)當(dāng) y=0 時(shí),有﹣x2+2x+3=0, 解得:x1=﹣1,x2=3,

∴點(diǎn) B 的坐標(biāo)為(3,0).

y=﹣x2+2x+3=﹣x﹣12+4,

∴點(diǎn) E 的坐標(biāo)為(1,4).

設(shè)過 B,C 兩點(diǎn)的直線解析式為 y=kx+b(k≠0),將 B(3,0),C(0,3)代入 y=kx+b,得:,解得: ,

∴直線 BC 的解析式為 y=﹣x+3.

∵點(diǎn) D 是直線與拋物線對(duì)稱軸的交點(diǎn),

∴點(diǎn) D 的坐標(biāo)為(1,2),

DE=2,

∴當(dāng)點(diǎn) P 運(yùn)動(dòng)到點(diǎn) E 時(shí),PCD 的面積=×2×1=1.

(3)設(shè)點(diǎn) M 的坐標(biāo)為(m,0),點(diǎn) N 的坐標(biāo)為(1,n).分三種情況考慮:

①當(dāng)四邊形 CBMN 為平行四邊形時(shí),有 1﹣0=m﹣3, 解得:m=4,

∴此時(shí)點(diǎn) M 的坐標(biāo)為(4,0);

②當(dāng)四邊形 CMNB 為平行四邊形時(shí),有 m﹣1=0﹣3, 解得:m=﹣2,

∴此時(shí)點(diǎn) M 的坐標(biāo)為(﹣2,0);

③當(dāng)四邊形 CMBN 為平行四邊形時(shí),有 0﹣1=m﹣3, 解得:m=2,

∴此時(shí)點(diǎn) M 的坐標(biāo)為(2,0).

綜上所述:存在這樣的點(diǎn) M 與點(diǎn) N,使以 M,N,C,B 為頂點(diǎn)的四邊形是平行四邊形,點(diǎn) M 的坐標(biāo)為(4,0)或(﹣2,0)或(2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的頂點(diǎn)A(11)、B(3,1),規(guī)定把等邊△ABC“先沿y軸翻折,再向下平移1個(gè)單位”為一次變換,如果這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;-1≤a≤-③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明與小剛玩擲骰子游戲,按所得的數(shù)字是幾,棋子就向前走幾格,每人可連續(xù)投擲兩次,棋子最終落到哪一格,就可獲得相應(yīng)格子中的獎(jiǎng)品.現(xiàn)在輪到小明擲骰子,棋子處于如圖所示的地方.

求:(1)小明擲一次骰子能得到獎(jiǎng)品嗎?

(2)小明下一次投擲有沒有可能獲得獎(jiǎng)品?若能獲獎(jiǎng),概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形中,是邊的中點(diǎn),將沿對(duì)折至,延長(zhǎng)于點(diǎn),連接,則的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在一棵樹的10m高的B處有兩只猴子,其中一只爬下樹走向離樹20m的池塘C.而另一只猴子爬到樹頂D沿直線DC進(jìn)入池塘,結(jié)果兩只猴子經(jīng)過的路程相等,則樹有多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張?jiān)職v表,在此月歷表上用一個(gè)正方形任意圈出 2×2個(gè)數(shù)(如 1,28,9), 如果圈出的四個(gè)數(shù)中的最小數(shù)與最大數(shù)的積為 308,那么這四個(gè)數(shù)的和為(

A.68B.72C.74D.76

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是(  。

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一批L型服裝(數(shù)量足夠多),進(jìn)價(jià)為40元/件,以60元/件銷售,每天銷售20件。根據(jù)市場(chǎng)調(diào)研,若每件每降1元,則每天銷售數(shù)量原來多3件,F(xiàn)商場(chǎng)決定對(duì)L型服裝開展降價(jià)促銷活動(dòng),每件降價(jià)x元(x為正整數(shù))。在促銷期間,商場(chǎng)要想每天獲得最大銷售利潤(rùn),每件降價(jià)多少元?每天最大銷售毛利潤(rùn)為多少?(注:每件服裝銷售毛利潤(rùn)指每件服裝的銷售價(jià)與進(jìn)貨價(jià)的差

查看答案和解析>>

同步練習(xí)冊(cè)答案