【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥BD,AC平分∠BAD.
(1)給出下列四個條件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四個條件中,選擇一個合適的條件,使四邊形ABCD是菱形,這個條件是(填寫序號);
(2)根據(jù)所選擇的條件,證明四邊形ABCD是菱形.
【答案】(1)④(2)見解析
【解析】
(1)根據(jù)平行四邊形的判定選擇的條件能使四邊形ABCD是平行四邊形,然后即可證明四邊形ABCD是菱形;
(2)首先證明△AOB≌△AOD,然后結合AD∥BC可得到AB=AD= BC,根據(jù)平行四邊形的判定可得四邊形ABCD是平行四邊形,再由AC⊥BD可證□ABCD是菱形.
解:(1)選擇④可以使四邊形ABCD是菱形.
(2)證明:
∵AC⊥BD,∴∠AOB=∠AOD=90°.
∵AC平分∠BAD,∴∠BAO=∠DAO.
又∵AO=AO,∴△AOB≌△AOD.
∴AB=AD.
∵AD∥BC,∴∠DAO=∠BCO.
又∵∠BAO=∠DAO,∴∠BAO=∠BCO.
∴BA=BC.
∴AD=BC.
又∵AD∥BC,∴四邊形ABCD是平行四邊形.
又∵AC⊥BD,∴□ABCD是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】目前世界上最長的跨海大橋——杭州灣跨海大橋通車了.通車后,地到寧波港的路程比原來縮短了.已知運輸車速度不變時,行駛時間將從原來的縮短到.
(1)求地經(jīng)杭州灣跨海大橋到寧波港的路程.
(2)若貨物運輸費用包括運輸成本和時間成本,某車貨物從地到寧波港的運輸成本是每千米元,時間成本是每時元,那么該車貨物從地經(jīng)杭州灣跨海大橋到寧波港的運輸費用是多少元?
(3)A地準備開辟寧波方向的外運路線,即貨物從地經(jīng)杭州灣跨海大橋到寧波港,再從寧波港運到地.若有一批貨物(不超過車)從地按外運路線運到地的運費需元,其中從地經(jīng)杭州灣跨海大橋到寧波港的每車運輸費用與(2)中相同,從寧波港到地的海上運費對一批不超過車的貨物計費方式是:車元,當貨物每增加車時,每車的海上運費就減少元,問這批貨物有幾車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊△ABC與正方形DEFG如圖1放置,其中D,E兩點分別在AB,BC上,且BD=BE.
(1)求∠DEB的度數(shù);
(2)當正方形DEFG沿著射線BC方向以每秒1個單位長度的速度平移時,CF的長度y隨著運動時間變化的函數(shù)圖象如圖2所示,且當t=時,y有最小值1;
①求等邊△ABC的邊長;
②連結CD,在平移的過程中,求當△CEF與△CDE同時為等腰三角形時t的值;
③從平移運動開始,到GF恰落在AC邊上時,請直接寫出△CEF外接圓圓心的運動路徑的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,且AB=AC,直徑AD交BC于點E,F(xiàn)是OE上的一點,使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=12,E為BC的中點.⊙O與邊BC相切于點E,并交邊AD于點M、N,AM=3.
(1)求⊙O的半徑;
(2)將矩形ABCD繞點E順時針旋轉,旋轉角為(0°<≤90°).在旋轉的過程中,⊙O和矩形ABCD的邊是否能夠相切,若能,直接寫出相切時,旋轉角的正弦值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量學校旗桿AB的高度,小明從旗桿正前方3米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進2米到達點D,在點D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內,且旗桿和測角儀都與地面垂直.
(1)求點D的鉛垂高度(結果保留根號);
(2)求旗桿AB的高度(精確到0.1).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com