【題目】將正偶數(shù)按下表排成列:

第一列

第二列

第三列

第四列

第五列

第一行

2

4

6

8

第二行

16

14

12

10

第三行

18

20

22

24

第四行

32

30

28

26

根據(jù)上表排列規(guī)律,則偶數(shù)應(yīng)在第_________列.

【答案】

【解析】

根據(jù)題意得到每一行是4個偶數(shù),奇數(shù)行從第2列往后排,偶數(shù)行從第4列往前排,然后用2000除以2得到2000是第1000個偶數(shù),再用1000÷4250,于是可判斷2000在第幾行第幾列.

2020÷2=1010,

2020是第1010個偶數(shù),

1010÷4=252······2,

1010個偶數(shù)是253行第二個數(shù),

253為奇數(shù),則從第二列往右數(shù),

∴第1010個偶數(shù)是253行,第三列,

則偶數(shù)應(yīng)在第三列,

故答案為三.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家公司名員工的月薪(單位:元)是

1)計算這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù);

2)解釋本題中平均數(shù)、中位數(shù)和眾數(shù)的意義。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對角線相交于點O,點EAB邊的中點,圖中已有三角形與△ADE面積相等的三角形(不包括△ADE)共有( )個.

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y軸交于點,與x軸交于點,點P是線段AB上方拋物線上的一個動點.

求這條拋物線的表達式及其頂點坐標(biāo);

當(dāng)點P移動到拋物線的什么位置時,使得,求出此時點P的坐標(biāo);

當(dāng)點PA點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標(biāo)以每秒1個單位長度的速度變動;與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點P,M移動到各自終點時停止當(dāng)兩個動點移動t秒時,求四邊形PAMB的面積S關(guān)于t的函數(shù)表達式,并求t為何值時,S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)若∠AOC=30°時,則∠DOE的度數(shù)為_____;

(2)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖②的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

(3)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖③的位置,其他條件不變.直接寫出∠AOC和∠DOE的度數(shù)之間的關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

1)甲、乙兩種書柜每個的價格分別是多少元?

2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀]

在平面直角坐標(biāo)系中,以任意兩點Px1,y1)、Qx2,y2)為端點的線段中點坐標(biāo)為).

[運用]

(1)如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標(biāo)原點,E的坐標(biāo)為(4,3),則點M的坐標(biāo)為

(2)在直角坐標(biāo)系中,A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、BC構(gòu)成平行四邊形的頂點,求點D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系如圖,直線的經(jīng)過點和點

m、n的值;

如果拋物線經(jīng)過點A、B,該拋物線的頂點為點P,求的值;

設(shè)點Q在直線上,且在第一象限內(nèi),直線y軸的交點為點D,如果,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AOB中,ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且BOD的面積SBOD=4.

(1)求反比例函數(shù)解析式;

(2)求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案