【題目】如圖是計(jì)算機(jī)中的一種益智小游戲掃雷的畫面,在一個(gè)的小方格的正方形 雷區(qū)中,隨機(jī)埋藏著顆地雷,每個(gè)小方格內(nèi)最多只能埋藏顆地雷。小紅在游戲開始時(shí)首先隨機(jī)的點(diǎn)擊一個(gè)方格,該方格中出現(xiàn)了數(shù)字,其意義表示該格的外圍區(qū)域(圖中陰影部分,記為區(qū)域)有顆地雷;接著小紅又點(diǎn)擊了左上角第一個(gè)方格,出現(xiàn)了數(shù)字,其外圍區(qū)域(圖中陰影)記為區(qū)域;區(qū)域與區(qū)域以及出現(xiàn)數(shù)字兩格以外的部分記為區(qū)域。請(qǐng)分別計(jì)算出區(qū)、區(qū)、區(qū)點(diǎn)中地雷的概率,那么她應(yīng)點(diǎn)擊、中的哪個(gè)區(qū)域?

【答案】,,小紅點(diǎn)擊區(qū)域.

【解析】

根據(jù)幾何概率,求出地雷數(shù)埋有地雷的區(qū)域的面積之比,即為遇到地雷的概率,然后比較概率的大小.

,,

,

,∴小紅點(diǎn)擊區(qū)域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)EF分別在BCCD上,AE=AF

1)求證:BE=DF;

2)連接ACEF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM=OA,連接EMFM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,一次函數(shù)y=﹣2x﹣3的圖象與反比例函數(shù)y=m≠0)的圖象相交于點(diǎn)A(﹣2,1)和點(diǎn)B.

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)B的坐標(biāo);

(3)根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時(shí),一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°AD8,FAB的中點(diǎn).過(guò)點(diǎn)FFE⊥AD,垂足為E.△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A′E′F′.設(shè)PP′分別是EF、E′F′的中點(diǎn),當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí),四邊形PP′F′F的面積為(   )

A. 8B. 4C. 12D. 88

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1 4a3b-6a2b2+12ab3÷2ab

2 a3·a4·a+(a2)4+(-2a4)2

3

4

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明從P點(diǎn)出發(fā),沿北偏東60°方向行駛到達(dá)A處,接著向正南方向行駛100(+1)米到達(dá)B處.在B處觀測(cè)到出發(fā)時(shí)所在的P處在北偏西45°方向上,P,A兩處相距多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A0,a)、Bb,0).

1)若ab滿足a2+b28a4b+20=0.如圖,在第一象限內(nèi)以AB為斜邊作等腰RtABC,請(qǐng)求四邊形AOBC的面積S;

2)如圖,若將線段AB沿x軸向正方向移動(dòng)a個(gè)單位得到線段DED對(duì)應(yīng)A,E對(duì)應(yīng)B)連接DO,作EFDOF,連接AF、BF,判斷AFBF的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線my=﹣0.25x+h2+kx軸的交點(diǎn)為AB,與y軸的交點(diǎn)為C,頂點(diǎn)為M3,6.25),將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為D

1)求拋物線n的解析式;

2)設(shè)拋物線nx軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段DE上一個(gè)動(dòng)點(diǎn)(P不與D,E重合),過(guò)點(diǎn)Py軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為(x,y),PEF的面積為S,求Sx的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;

3)設(shè)拋物線m的對(duì)稱軸與x軸的交點(diǎn)為G,以G為圓心,A,B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案