【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
【答案】(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.
【解析】試題(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點(diǎn),可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先證明BE與DF平行且相等,然后根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點(diǎn),
∴AE=AB,CF=
CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標(biāo)系,點(diǎn)
,點(diǎn)
,
,
.
以點(diǎn)
為對(duì)稱中心,畫出
,使
與
關(guān)于點(diǎn)
對(duì)稱,并寫出下列點(diǎn)的坐標(biāo):
________,
________;
多邊形
的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點(diǎn)E,
(1)若∠ACE=18°,則∠ECD=
(2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.
(3)如圖2,作△ABC的高AF并延長(zhǎng),交BD于點(diǎn)G,交CD延長(zhǎng)線于點(diǎn)H,求證:CH2+DH2=2AD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn)
,對(duì)稱軸為直線
,一次函數(shù)
的圖象經(jīng)過點(diǎn)
,交
軸于點(diǎn)
,交拋物線于另一點(diǎn)
,點(diǎn)
、
位于點(diǎn)
的同側(cè).
求拋物線的解析式;
若
,求一次函數(shù)的解析式;
在
的條件下,當(dāng)
時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)
,使得
同時(shí)與
軸和直線
都相切,如果存在,請(qǐng)求出點(diǎn)
的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)圖形成中心對(duì)稱,則下列說(shuō)法:
①對(duì)應(yīng)點(diǎn)的連線一定經(jīng)過對(duì)稱中心;
②這兩個(gè)圖形的形狀和大小完全相同;
③這兩個(gè)圖形的對(duì)應(yīng)線段一定互相平行;
④將一個(gè)圖形圍繞對(duì)稱中心旋轉(zhuǎn)后必與另一個(gè)圖形重合.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,
,
,點(diǎn)D在邊
上,將
繞點(diǎn)A逆時(shí)針轉(zhuǎn),使
與
重合,點(diǎn)D的對(duì)應(yīng)點(diǎn)是E.若點(diǎn)B、D、E在同一條直線上,則
的度數(shù)為_____(用含
的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)銷一種商品,已知其每件進(jìn)價(jià)為40元。現(xiàn)在每件售價(jià)為70元,每星期可賣出500件。該商場(chǎng)通過市場(chǎng)調(diào)查發(fā)現(xiàn):若每件漲價(jià)1元,則每星期少賣出10件;若每件降價(jià)1元,則每星期多賣出m(m為正整數(shù))件。設(shè)調(diào)查價(jià)格后每星期的銷售利潤(rùn)為W元。
(1)設(shè)該商品每件漲價(jià)x(x為正整數(shù))元,
①若x=5,則每星期可賣出____件,每星期的銷售利潤(rùn)為_____元;
②當(dāng)x為何值時(shí),W最大,W的最大值是多少。
(2)設(shè)該商品每件降價(jià)y(y為正整數(shù))元,
①寫出W與Y的函數(shù)關(guān)系式,并通過計(jì)算判斷:當(dāng)m=10時(shí)每星期銷售利潤(rùn)能否達(dá)到(1)中W的最大值;
②若使y=10時(shí),每星期的銷售利潤(rùn)W最大,直接寫出W的最大值為_____。
(3)若每件降價(jià)5元時(shí)的每星期銷售利潤(rùn),不低于每件漲價(jià)15元時(shí)的每星期銷售利潤(rùn),求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)圓錐的高為cm,側(cè)面展開圖是半圓.
求:(1)圓錐的母線長(zhǎng)與底面半徑之比;
(2)求∠BAC的度數(shù);
(3)圓錐的側(cè)面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com