【題目】如圖,OA.OB是O的半徑且OAOB,作OA的垂直平分線(xiàn)交O于點(diǎn)C.D,連接CB.AB

求證:ABC=2CBO

【答案】證明見(jiàn)解析

【解析

試題分析:連接OC.AC,如圖,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)得OC=AC,則可判斷OAC是等邊三角形,所以AOC=60°,于是根據(jù)圓周角定理得到ABC=AOC=30°,然后在BOC中,由于BOC=AOC+AOB=150°,根據(jù)三角形內(nèi)角和可計(jì)算出CBO=15°,所以ABC=2CBO

試題解析:連接OC.AC,如圖,

CD垂直平分OA,

OC=AC

OC=AC=OA,

∴△OAC是等邊三角形,

∴∠AOC=60°,

∴∠ABC=AOC=30°,

BOC中,BOC=AOC+AOB=150°,

OB=OC,

∴∠CBO=15°

∴∠ABC=2CBO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某股票經(jīng)紀(jì)人給他的投資者出了一道題,說(shuō)明投資人的贏利凈賺情況(單位:元):

股票名稱(chēng)

中國(guó)重工

五糧液

工商銀行

四川路橋

每股凈賺(元)

+23

+1.5

3

﹣(﹣2

股數(shù)

500

1000

1000

500

請(qǐng)你計(jì)算一下,投資者到底是賠了還是賺了,賠了或賺了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是平行四邊形ABCD的對(duì)角線(xiàn),∠BAC=∠DAC.

(1)求證:AB=BC;

(2)若AB=4,AC=,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線(xiàn)ABDC,點(diǎn)P為平面上一點(diǎn),連接APCP.

(1)如圖1,點(diǎn)P在直線(xiàn)AB、CD之間,當(dāng)∠BAP=60°,DCP=20°時(shí),求∠APC.

(2)如圖2,點(diǎn)P在直線(xiàn)AB、CD之間,∠BAP與∠DCP的角平分線(xiàn)相交于點(diǎn)K,寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線(xiàn)相交于點(diǎn)K,AKC與∠APC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過(guò)點(diǎn)C的直線(xiàn)MNAB,DAB邊上一點(diǎn),過(guò)點(diǎn)DDEBC,交直線(xiàn)MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿(mǎn)足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)yax+b與直線(xiàn)yx+c的交點(diǎn)的橫坐標(biāo)為1,根據(jù)圖象有下列四個(gè)結(jié)論:a0;c0;對(duì)于直線(xiàn)yx+c上任意兩點(diǎn)AxA,yA)、BxB,yB),若xAxB,則yAyB;x1是不等式ax+bx+c的解集,其中正確的結(jié)論是( 。

A. ①②B. ①③C. ①④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校在我和我的祖國(guó)快閃拍攝活動(dòng)中,為學(xué)生化妝.其中5名男生和3名女生共需化妝費(fèi)190元;3名男生的化妝費(fèi)用與2名女生的化妝費(fèi)用相同.

1)求每位男生和女生的化妝費(fèi)分別為多少元;

2)如果學(xué)校提供的化妝總費(fèi)用為2000元,根據(jù)活動(dòng)需要至少應(yīng)有42名女生化妝,那么男生最多有多少人化妝.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把ABC向上平移3個(gè)單位后得到A1B1C1,請(qǐng)畫(huà)出A1B1C1并寫(xiě)出點(diǎn)B1的坐標(biāo);

(2)已知點(diǎn)A與點(diǎn)A2(2,1)關(guān)于直線(xiàn)l成軸對(duì)稱(chēng),請(qǐng)畫(huà)出直線(xiàn)lABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的A2B2C2,并直接寫(xiě)出直線(xiàn)l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天上午,一出租車(chē)司機(jī)始終在一條南北走向的筆直馬路上營(yíng)運(yùn),(出發(fā)點(diǎn)記作為點(diǎn)O,約定向南為正,向北為負(fù)),期間一共運(yùn)載6名乘客,行車(chē)?yán)锍?/span>(單位:千米)依先后次序記錄如下:﹢7,﹣3,﹢6,﹣1,﹢2,﹣4.

(1)出租車(chē)在行駛過(guò)程中,離出發(fā)點(diǎn)O最遠(yuǎn)的距離是______千米;

(2)將最后一名乘客送到目的地,出租車(chē)離出發(fā)點(diǎn)O多遠(yuǎn)?在O點(diǎn)的什么方向?

(3)出租車(chē)收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)(不超過(guò)3千米)8元,超過(guò)3千米的部分每千米的價(jià)格為1.5元,求司機(jī)這天上午的營(yíng)業(yè)額.

查看答案和解析>>

同步練習(xí)冊(cè)答案