【題目】正方形中,點(diǎn)是直線上的一個動點(diǎn),連接,將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連接.
(1)如圖1,若點(diǎn)在線段上,
①直接寫出的度數(shù)為 °;
②求證:;
(2)如圖2,若點(diǎn)在的延長線上,,,
①依題意補(bǔ)全圖2;
②直接寫出線段的長度為 .
【答案】(1)①;②證明見解析;(2)①補(bǔ)全圖形見解析;②.
【解析】
(1)①證明△BAP≌△BCE,得∠BAC=∠BCE=45°,從而可求出結(jié)論;
②連接,可得△PBE,△PCE均為直角三角形,利用勾股定理即可求解;
(2)①根據(jù)提示補(bǔ)全圖形即可;
②連接PE,可得△PBE,△PCE均為直角三角形,利用勾股定理求得PE=,PC=5,從而可求AC=4.
(1)∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∵∠PBE=90°,
∴∠ABP=∠CBE,
又BP=BE,
∴△BAP≌△BCE,
∴∠BAP=∠BCE
∵AC是正方形的對角線,
∴∠BAC=∠BCA=45°,
∴∠BCE=∠BCA=45°,
∴∠BCE+∠BCA=90°,即的度數(shù)為90°;
②證明:連接,如圖.
∵四邊形是正方形,
∴,,.
∵將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,
∴,.
∴,
.
∴≌().
∴,.
∴.
在中,由勾股定理,得.
∵,,
∴.
(2)①補(bǔ)全的圖形如圖所示.
②連接PE.易證△PBA≌△EBC,
∴CE=PA=1,∠BAP=∠BCE,
∵四邊形ABCD是正方形,
∴∠BAC=∠BCA=45°,
∴∠BAP=∠BCE=135°,
∴∠ECA=90°,即△PCE是直角三角形,
在Rt△PBE中,PE=PB=,
在Rt△PCE中,PC=
∴AC=PC-PA=5-1=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)沿東西方向的公路送旅客,如果約定向東為正,向西為負(fù),當(dāng)天的歷史記錄如下(單位:千米)
,,,,,,,,,
(1)出租車司機(jī)最后到達(dá)的地方在出發(fā)點(diǎn)的哪個方向?距出發(fā)點(diǎn)多遠(yuǎn)?
(2)出租車司機(jī)最遠(yuǎn)離出發(fā)點(diǎn)有多遠(yuǎn)?
(3)若汽車每千米耗油量為升,則這天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場要考察一種幼樹在一定條件下的移植成活率,在移植過程中的統(tǒng)計(jì)結(jié)果如下表所示:
移植的幼樹n/棵 | 500 | 1000 | 2000 | 4000 | 7000 | 10000 | 12000 | 15000 |
成活的幼樹m/棵 | 423 | 868 | 1714 | 3456 | 6020 | 8580 | 10308 | 12915 |
成活的頻率 | 0.846 | 0.868 | 0.857 | 0.864 | 0.860 | 0.858 | 0.859 | 0.861 |
在此條件下,估計(jì)該種幼樹移植成活的概率為_________________(精確到);若該林場欲使成活的幼樹達(dá)到4.3萬棵,則估計(jì)需要移植該種幼樹_________萬棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為,每個小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)都在格點(diǎn)上.按照要求完成下列畫圖(只在此的網(wǎng)格中完成且所畫各點(diǎn)都是格點(diǎn),所畫的點(diǎn)可以與已知點(diǎn)重合).
(1)將繞點(diǎn)逆時針旋轉(zhuǎn),得到;
(2)畫出所有點(diǎn),使得以,,,為頂點(diǎn)的四邊形是平行四邊形;
(3)畫出一個與相似(但不全等)的三角形,且與有公共點(diǎn)(畫出一個三角形即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分6分)某公司調(diào)查某中學(xué)學(xué)生對其環(huán)保產(chǎn)品的了解情況,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
(1)本次問卷共隨機(jī)調(diào)查了 名學(xué)生,扇形統(tǒng)計(jì)圖中m= .
(2)請根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1000名學(xué)生,估計(jì)選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠在生產(chǎn)過程中要消耗大量電能,消耗每千度電產(chǎn)生利潤與電價(jià)是一次函數(shù)關(guān)系,經(jīng)過測算,工廠每千度電產(chǎn)生利潤y(元/千度))與電價(jià)x(元/千度)的函數(shù)圖象如圖:
(1)請求出y與x之間的函數(shù)關(guān)系式;
(2)為了實(shí)現(xiàn)節(jié)能減排目標(biāo),有關(guān)部門規(guī)定,該廠電價(jià)x(元/千度)與每天用電量m(千度)的函數(shù)關(guān)系為x=20m+500,且該工廠每天用電量不超過50千度,為了獲得最大利潤w,工廠每天應(yīng)安排使用多少度電?工廠每天消耗電產(chǎn)生利潤最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) A、B 在數(shù)軸上表示的數(shù)分別為﹣12 和 8,兩只螞蟻 M、N 分別 從 A、B 兩點(diǎn)同時出發(fā),相向而行.M 的速度為 2 個單位長度/秒,N 的速度為 3 個單位長度/秒.
(1)運(yùn)動 秒鐘時,兩只螞蟻相遇在點(diǎn) P;點(diǎn) P 在數(shù)軸上表示的數(shù) 是 ;
(2)若運(yùn)動 t 秒鐘時,兩只螞蟻的距離為 10,求出 t 的值(寫出解題過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com