【題目】如圖,AB為半圓O的直徑,AD、BC分別與⊙O相切于點(diǎn)A,B,CD與⊙O相切于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OE、OC,已知AD=2,BC=4,對(duì)于下列結(jié)論:①AD+BC=CD:②∠DOC=90°;③S梯形ABCD=CDOA:④OA=2.其中結(jié)論正確的有_____.(請(qǐng)把正確的結(jié)論的序號(hào)填在橫線上)
【答案】①②
【解析】
連接OE,利用切線長(zhǎng)定理得到AD=ED,CE=CB,且OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,進(jìn)而確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,可求OA的長(zhǎng),根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,由梯形的面積公式可得S梯形ABCD=AB(AD+BC)=ABCD,即可得到正確的選項(xiàng);
解:∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,DA=DE=2,CE=CB=4,
∴AD∥BC,
∴CD=DE+EC=AD+BC,選項(xiàng)①正確;
在Rt△ADO和Rt△EDO中,
,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項(xiàng)②正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴,即OE2=DEEC=8,
∴OE=,
∴OA=OE=,選項(xiàng)④錯(cuò)誤;
而S梯形ABCD=AB(AD+BC)=ABCD,選項(xiàng)③錯(cuò)誤;
則正確的選項(xiàng)有①②.
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣bx+c的y與x的部分對(duì)立值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列結(jié)論①拋物線的開(kāi)口向下:②其圖象的對(duì)稱軸為x=1:③當(dāng)x<1時(shí).函數(shù)值y隨x的增大而增大,④方程ax2+bx+c=0有一個(gè)根大于4.其中正確的結(jié)論有_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為紀(jì)念建國(guó)70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛(ài)你,中國(guó)》,《歌唱祖國(guó)》,《我和我的祖國(guó)》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫在3張無(wú)差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長(zhǎng)先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長(zhǎng)從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國(guó)》的概率是__________;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是⊙O的直徑,C點(diǎn)在⊙O上,F是AC的中點(diǎn),OF的延長(zhǎng)線交⊙O于點(diǎn)D,點(diǎn)E在AB的延長(zhǎng)線上,∠A=∠BCE.
(1)求證:CE是⊙O的切線;
(2)若BC=BE,判定四邊形OBCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)經(jīng)過(guò)A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M為拋物線第四象限內(nèi)一點(diǎn),連接BC、CM、BM,求當(dāng)△BCM的面積最大時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,直線MN經(jīng)過(guò)點(diǎn)A,BE⊥MN于點(diǎn)E,CF⊥MN于點(diǎn)F,DG⊥MN于點(diǎn)G.
(1)當(dāng)MN繞點(diǎn)A旋轉(zhuǎn)到圖①位置時(shí),求證:BE +CF =DG; .
(2)當(dāng)MN繞點(diǎn)A旋轉(zhuǎn)到圖②和圖③位置時(shí),線段BE,CF,DG之間又有怎樣的數(shù)量關(guān)系?
請(qǐng)寫出你的猜想,不需要證明;
(3)在(1)(2)的條件下,若CD =2AE =6,EF =43,則CF= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】賓館有50間房供游客居住,當(dāng)每間房每天定價(jià)為180元時(shí),賓館會(huì)住滿;當(dāng)每間房每天的定價(jià)每增加10元時(shí),就會(huì)空閑一間房.如果有游客居住,賓館需對(duì)居住的每間房每天支出20元的費(fèi)用.當(dāng)房?jī)r(jià)定為多少元時(shí),賓館當(dāng)天的利潤(rùn)為10890元?設(shè)房?jī)r(jià)比定價(jià)180元增加x元,則有( 。
A.(x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890
C.(180+x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=10890
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明想利用所學(xué)數(shù)學(xué)知識(shí)測(cè)量學(xué)校旗桿高度,如圖,旗桿的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小明拿起繩子末端,后退至E處,拉直繩子,此時(shí)繩子末端D距離地面1.6m且繩子與水平方向成45°角.
(1)填空:AD_____AC(填“>”,“<”,“=”).
(2)求旗桿AB的高度.
(參考數(shù)據(jù): ≈1.41, ≈1.73,結(jié)果精確到0.1m).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com