(2012•高郵市一模)將圖1中的矩形ABCD沿對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到圖2中的△A′BC′.
(1)寫出圖2中的兩對(duì)全等的三角形(不能添加輔助線和字母,△C′BA′≌△ADC除外);
(2)選擇一對(duì)加以證明.
分析:(1)本題是開放題,應(yīng)先確定選擇哪對(duì)三角形,再對(duì)應(yīng)三角形全等條件求解;
(2)根據(jù)平移的性質(zhì):經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等找到等量關(guān)系進(jìn)行證明即可.
解答:解:(1)△AA'E≌△C'CF、△A'DF≌△CBE.
(2)△AA'E≌△C'CF,
證明:由平移的性質(zhì)可知:AA'=CC',
所以有
AA′=CC′
∠AA′E=∠C′CF=90°
∠A=∠C′

∴△AA'E≌△C'CF,
或:△A'DF≌△CBE,
證明:由平移的性質(zhì)可知:A'E∥CF,A'F∥CE,
∴四邊形A'ECF是平行四邊形,
∴A'F=CE,A'E=CF,
∵A'B=CD,
∴DF=BE,
∵∠B=∠D=90°,
所以有
A′F=CE
DF=BE

∴△A'DF≌△CBE.
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等;同時(shí)本題還考查平移的基本性質(zhì)是:①平移不改變圖形的形狀和大。虎诮(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)學(xué)校以1班學(xué)生的地理測試成績?yōu)闃颖,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成兩幅統(tǒng)計(jì)圖,結(jié)合圖中信息填空:
(1)D級(jí)學(xué)生的人數(shù)占全班人數(shù)的百分比為
4%
4%
;
(2)扇形統(tǒng)計(jì)圖中C級(jí)所在扇形圓心角度數(shù)為
72°
72°

(3)該班學(xué)生地理測試成績的中位數(shù)落在
B
B
級(jí)內(nèi);
(4)若該校共有1500人,則估計(jì)該校地理成績得A級(jí)的學(xué)生約有
390
390
人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)一次函數(shù)y=-x+6與反比例函數(shù)y=
8x
的圖象交于A、B兩點(diǎn),設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),則邊長分別為x1、y1的矩形周長為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)如圖,DE是△ABC的中位線,M是DE的中點(diǎn),若△ABC的面積為48cm2,則△DMN的面積為
2
2
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)如圖,A、B、C、D是⊙O四等分點(diǎn),動(dòng)點(diǎn)P沿O-C-D-O路線作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為xs,∠APB=y°,右圖表示y與x之間函數(shù)關(guān)系,則點(diǎn)M的橫坐標(biāo)為
π
2
+1
π
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高郵市一模)已知△ABC中,∠ACB=90°,AC=6,BC=8,過點(diǎn)A作直線MN⊥AC,點(diǎn)P是直線MN上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A不重合),連接CP交AB于點(diǎn)D,設(shè)AP=x,AD=y.

(1)如圖1,若點(diǎn)P在射線AM上,求y與x的函數(shù)解析式;
(2)射線AM上是否存在一點(diǎn)P,使以點(diǎn)D、A、P組成的三角形與△ABC相似,若存在,求AP的長,若不存在,說明理由;
(3)如圖2,過點(diǎn)B作BE⊥MN,垂足為E,以C為圓心、AC為半徑的⊙C與以P為圓心PD為半徑的動(dòng)⊙P相切,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案