【題目】如圖,已知拋物線經過點,及原點,頂點為.
(1)求拋物線的解析式:
(2)試判斷的形式,并說明理由:
(3)是拋物線上第二象限內的動點,過點作軸,垂足為,是否存在點使得以點、、為頂點的三角形與相似?若存在,求出點的坐標;若不存在,請說明理由.
【答案】 ;是直角三角形點的坐標為或
【解析】
(1)根據(jù)拋物線過A(2,0)及原點可設y=a(x-2)x,然后根據(jù)拋物線y=a(x-2)x過B(3,3),求出a的值即可;
(2)利用兩點間距離公式OB2=18,OC2=2,BC2=20,利用勾股定理逆定理即可得出結論.
(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,從而表示出點P的坐標,代入求得的拋物線的解析式即可求得t的值,從而確定點P的坐標.
根據(jù)拋物線過及原點,可設,
又∵拋物線過,
∴,
∴,
∴拋物線的解析式為;由知拋物線解析式為;
∴,
∵,,
∴,,,
∴,
∴是直角三角形.由知,為直角三角形,,且,
①如圖,
若,
∴,
∴,
設,則,
∴點,
代入得,
解得(舍)或,
∴的坐標為;
②如圖,
若,
∴
設,則,
點,代入得,
解得(舍),,
∴
綜上所述,點的坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在ΔABC和ΔADE中,AB=AC,AD=AE,∠BAC=∠DAE,,且點B,A,D在同一條直線上,連接BE,CD,M,N分別為BE,CD的中點, 連接AM,AN,MN.
⑴.求證:BE=CD
⑵.求證:ΔAMN是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD.
(1)求證:AB=AD;
(2)求證:CD平分∠ACE.
(3)猜想∠BDC與∠BAC之間有何數(shù)量關系?并對你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),則該函數(shù)圖象的開口________(填“向上”或“向下”);若點在該二次函數(shù)的圖象上,則點在第二象限內為________(填“隨機”“必然”或“不可能”)事件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一間房子的兩墻之間有一個底端在點的梯子,當它靠在一側墻上時,梯子的頂端在點;當它靠在另一側墻上時梯子的頂端在點.已知,,點到地面的垂直距離為米,則點到地面的垂直距離約是________米(精確到).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的與的不符對應值如下表:
且方程的兩根分別為, ,下面說法錯誤的是( ).
A. , B.
C. 當時, D. 當時,有最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com