【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連接OB、OC,線段AB、OB、OC、AC的中點(diǎn)分別為D、E、F、G.
(1)判斷四邊形DEFG的形狀,并說(shuō)明理由;
(2)若M為EF的中點(diǎn),OM=2,∠OBC和∠OCB互余,求線段BC的長(zhǎng).
【答案】(1)四邊形DEFG是平行四邊形,理由見(jiàn)解析;(2)BC=8.
【解析】
(1)根據(jù)三角形中位線定理、平行四邊形的判定定理解答;
(2)根據(jù)直角三角形的性質(zhì)求出EF,根據(jù)三角形中位線定理計(jì)算即可.
解:(1)四邊形DEFG是平行四邊形,
理由如下:∵E、F分別為線段OB、OC的中點(diǎn),
∴EF=BC,EF∥BC,
同理DG=BC,DG∥BC,
∴EF=DG,EF∥DG,
∴四邊形DEFG是平行四邊形;
(2)∵∠OBC和∠OCB互余,
∴∠BOC=90°,
∵M為EF的中點(diǎn),OM=2,
∴EF=2OM=4,
∴BC=2EF=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點(diǎn)C成中心對(duì)稱(chēng)的△A1B1C1,并直接寫(xiě)出A1、B1、C1各點(diǎn)的坐標(biāo);
(2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線過(guò)點(diǎn)A(3,0),B(﹣1,0),C(0,3),連接AC,點(diǎn)M是拋物線AC段上的一點(diǎn),且CM∥x軸.
(1)求拋物線的解析式;
(2)求∠CAM的正切值;
(3)點(diǎn)Q在拋物線上,且∠BAQ=∠CAM,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形MNPQ網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ的4條邊的小方格頂點(diǎn)上.
(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長(zhǎng)為1,求:正方形ABCD的面積;
(2)①在圖2中畫(huà)出以AB為一條直角邊的等腰直角△ABC,且點(diǎn)C在小正方形的頂點(diǎn)上;
②在圖2中畫(huà)出以AB為一邊的菱形ABDE,且點(diǎn)D和點(diǎn)E均在小正方形的頂點(diǎn)上,菱形ABDE的面積為15,連接CE,請(qǐng)直接寫(xiě)出線段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P的坐標(biāo)為(4,3),把點(diǎn)P繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到點(diǎn)Q.
(1)寫(xiě)出點(diǎn)Q的坐標(biāo)是 ;
(2)若把點(diǎn)Q向右平移m個(gè)單位長(zhǎng)度,向下平移2m個(gè)單位長(zhǎng)度后,得到的點(diǎn)Q′恰好落在第三象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:正方形OABC置于坐標(biāo)系中,B的坐標(biāo)是(-4,4),點(diǎn)D是邊OA上一動(dòng)點(diǎn),以OD為邊在第一象限內(nèi)作正方形ODEF.
(1)CD與AF有怎樣的位置關(guān)系,猜想并證明;
(2)當(dāng)OD=______時(shí),直線CD平分線段AF;
(3)在OD=2時(shí),將正方形ODEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α°(0°<α°<180°),求當(dāng)C、D、E共線時(shí)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BC
C. AB=CD,AD=BCD. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關(guān)系并證明;
(2)求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過(guò)點(diǎn)B,C作BE⊥AG 于點(diǎn)E,CF⊥AG于點(diǎn)F,則AE-GF的值為( )
A. 1 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com