【題目】某商場(chǎng)經(jīng)營某種品牌的計(jì)算器,購進(jìn)時(shí)的單價(jià)是20元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是30元時(shí),銷售量是600個(gè),而銷售單價(jià)每上漲1元,就會(huì)少售出10個(gè).

(1)不妨設(shè)該種品牌計(jì)算器的銷售單價(jià)為x元(x>30),請(qǐng)你分別用x的代數(shù)式來表示銷售量y個(gè)和銷售該品牌計(jì)算器獲得利潤w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)

x(x>30)

銷售量y(個(gè)

   

銷售計(jì)算器獲得利潤w(元)

   

(2)在第(1)問的條件下,若計(jì)算器廠規(guī)定該品牌計(jì)算器銷售單價(jià)不低于35元,且商場(chǎng)要完成不少于500個(gè)的銷售任務(wù),求:商場(chǎng)銷售該品牌計(jì)算器獲得最大利潤是多少?

【答案】(1)y=﹣10x+900,w=﹣10x2+1100x﹣18000;(2)最大利潤是10000元.

【解析】

(1)根據(jù)題意可以用含x的代數(shù)式分別表示出yw,本題得以解決;

(2)根據(jù)題意可以列出相應(yīng)的不等式和將w的關(guān)系式化為頂點(diǎn)式,本題得以解決.

(1)由題意可得,y=600﹣10(x﹣30)=﹣10x+900;

w=(x﹣20)(﹣10x+900)=﹣10x2+1100x﹣18000,

y=﹣10x+900,w=﹣10x2+1100x﹣18000,

故答案為:y=﹣10x+900,w=﹣10x2+1100x﹣18000;

(2)由題意可得,,

解得,35≤x≤40,

w=﹣10x2+1100x﹣18000=﹣10(x﹣55)2+12250,

∴當(dāng)x=40時(shí),w取得最大值,

此時(shí)w=﹣10(40﹣55)2+12250=10000,

即商場(chǎng)銷售該品牌玩具獲得最大利潤是10000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖5所示的程序,得到了yx的函數(shù)圖象,如圖5,若點(diǎn)M

y軸正半軸上任意一點(diǎn),過點(diǎn)MPQx軸交圖象于點(diǎn)PQ,連接OP、OQ,則以下結(jié)論:

x0時(shí),y=

②△OPQ的面積為定值

x0時(shí),yx的增大而增大

MQ=2PM

⑤∠POQ可以等于90°

其中正確結(jié)論是

A①②④B②④⑤C③④⑤D②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹,將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.

已知:CBAD,EDAD,測(cè)得BC=1mDE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色生態(tài)農(nóng)場(chǎng)生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價(jià)y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.

(1)求該產(chǎn)品銷售價(jià)y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(3)當(dāng)產(chǎn)量為多少時(shí),這種產(chǎn)品獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+px+q的對(duì)稱軸為直線x=﹣2,過其頂點(diǎn)M的一條直線y=kx+b與該拋物線的另一個(gè)交點(diǎn)為N(﹣1,﹣1).若要在y軸上找一點(diǎn)P,使得PM+PN最小,則點(diǎn)P的坐標(biāo)為( 。.

A. (0,﹣2) B. (0,﹣ C. (0,﹣ D. (0,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河流兩岸、平行,、是河岸上間隔米的兩根電線桿,某人在河岸上的處測(cè)得,然后沿河岸走了米到達(dá)處,測(cè)得,則河流的寬度的值為________(結(jié)果精確到個(gè)位,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑為10,點(diǎn)A、B、CO,CAB的平分線交O于點(diǎn)D

1,當(dāng)BCO的直徑時(shí),BD的長;

2,當(dāng)BD5時(shí),CDB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與直線相交于,,點(diǎn)軸上一動(dòng)點(diǎn).

1)①_______;②當(dāng)時(shí),的取值范圍是_______

2)求反比例函數(shù)與直線的解析式;

3)當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某一過街天橋的示意圖,天橋高米,坡道傾斜角,在距點(diǎn)米處有一建筑物.為方便行人上下天橋,市政部門決定減少坡道的傾斜角,但要求建筑物與新坡角處之間地面要留出不少于米寬的人行道.

若將傾斜角改建為(即),則建筑物是否要拆除?(

若不拆除建筑物,則傾斜角最小能改到多少度(精確到)?

查看答案和解析>>

同步練習(xí)冊(cè)答案