【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,Th之間在一定范圍內(nèi)近似地成一次函數(shù)關(guān)系.

(1)根據(jù)下表,求T(℃)h(km)之間的函數(shù)關(guān)系式;

溫度T(℃)

90

160

300

深度h(km)

2

4

8

(2)當(dāng)巖層溫度達(dá)到1770℃時(shí),巖層所處的深度為多少?

【答案】(1) T35h20(2)當(dāng)巖層溫度達(dá)到1770℃時(shí),巖層所處的深度為50km.

【解析】試題分析:(1任取兩對(duì)數(shù)用待定系數(shù)法求函數(shù)解析式.用其余的數(shù)對(duì)驗(yàn)證.

2知道溫度求深度,就是知道函數(shù)值求自變量.

試題解析:(1)設(shè)這個(gè)函數(shù)解析式為t=kh+b由表中數(shù)據(jù)得

解得k=35,b=20

th的函數(shù)關(guān)系式為t=35h+20

把其它數(shù)對(duì)代入也成立

2)當(dāng)t=1770時(shí),1770=35h+20,解得h=50,當(dāng)巖層溫度達(dá)到1770℃時(shí),巖層所處的深度為50千米

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰ABC中,BAC=120°,DE是AC的垂直平分線,DE=1cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器經(jīng)營(yíng)業(yè)主兩次購(gòu)進(jìn)一批同種型號(hào)的掛式空調(diào)和電風(fēng)扇,第一次購(gòu)進(jìn)8臺(tái)空調(diào)和20臺(tái)電風(fēng)扇;第二次購(gòu)進(jìn)10臺(tái)空調(diào)和30臺(tái)電風(fēng)扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風(fēng)扇每臺(tái)的采購(gòu)價(jià)各是多少元?
的條件下,若該業(yè)主計(jì)劃再購(gòu)進(jìn)這兩種電器70臺(tái),而可用于購(gòu)買(mǎi)這兩種電器的資金不超過(guò)30000元,問(wèn)該經(jīng)營(yíng)業(yè)主最多可再購(gòu)進(jìn)空調(diào)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠A=AGE,D=DGC.

(1)試說(shuō)明ABCD;

(2)若∠1+2=180°,且∠BEC=2B+60°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是( )

A.200米
B.200
C.220
D.100( +1)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10,過(guò)點(diǎn)AAD∥BC,且點(diǎn)D在點(diǎn)A的右側(cè).點(diǎn)P從點(diǎn)A出發(fā)沿射線AD方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿射線CB方向以每秒2個(gè)單位的速度運(yùn)動(dòng),在線段QC上取點(diǎn)E,使得QE=2,連結(jié)PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)若PE⊥BC,求BQ的長(zhǎng);

(2)請(qǐng)問(wèn)是否存在t的值,使以A,B,E,P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖4,四邊形ACDE、BAFG是以ABC的邊ACAB為邊向ABC外所作的正方形.

求證:1EB=FC.2EBFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn) ,點(diǎn) 第一次跳動(dòng)至帶你,第二次點(diǎn)跳動(dòng)至帶你,第三次點(diǎn)跳動(dòng)至帶你,第四次點(diǎn)跳動(dòng)至帶你,…… 依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案