【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,AC=2
(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D,(保留作圖痕跡,不寫作法)
(2)若△ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.

【答案】
(1)解:如圖所示,DE即為所求;


(2)解:由題可得,AE= AC= ,∠A=30°,

∴Rt△ADE中,DE= AD,

設DE=x,則AD=2x,

∴Rt△ADE中,x2+( 2=(2x)2,

解得x=1,

∴△ADE的周長a=1+2+ =3+ ,

∵T=(a+1)2﹣a(a﹣1)=3a+1,

∴當a=3+ 時,T=3(3+ )+1=10+3


【解析】(1)根據(jù)作已知線段的垂直平分線的方法,即可得到線段AC的垂直平分線DE;(2)根據(jù)Rt△ADE中,∠A=30°,AE= ,即可求得a的值,最后化簡T=(a+1)2﹣a(a﹣1),再求T的值.
【考點精析】認真審題,首先需要了解含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫出△ABC關于y軸對稱的△A1B1C1
②將△ABC繞著點B順時針旋轉90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉過程中所掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點P,若PA= cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點O在直線AB上,點A1、A2、A3 , …在射線OA上,點B1、B2、B3 , …在射線OB上,圖中的每一個實線段和虛線段的長均為一個單位長度,一個動點M從O點出發(fā),按如圖所示的箭頭方向沿著實線段和以O為圓心的半圓勻速運動,速度為每秒1個單位長度,按此規(guī)律,則動點M到達A101點處所需時間為秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=SABF . (S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25, ≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)( , )、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,是有理數(shù)是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(3,1)、(3,3),雙曲線y= (k≠0,x>0)過點D.

(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點E,連結DE,求△ CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣ x+1分別交x軸、y軸于點A、B,M是x軸正半軸上一動點,并以每秒1個單位的速度從O點向x軸正方向運動,過點M作x軸的垂線l,與拋物線y=x2 x﹣2交于點P,與直線AB交于點Q,連結BP,經(jīng)過t秒時,△PBQ是以BQ為腰的等腰三角形,則t的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算。
(1)解方程:y2﹣7y+10=0
(2)計算:( 2﹣|﹣1+ |+2sin60°+(1﹣ 0

查看答案和解析>>

同步練習冊答案