【題目】如圖1,在平面直角坐標系中,直線軸、軸分別交于點、,拋物線經(jīng)過點、,且與軸的另一交點為,連接.

(1)求拋物線的解析式;

(2)點在線段上方的拋物線上,連接、,若面積滿足,求點的坐標;

(3)如圖2,中點,設(shè)為線段上一點(不含端點),連接。一動點出發(fā),沿線段以每秒1個單位的速度運動到,再沿著線段以每秒個單位的速度運動到后停止。當點的坐標是多少時,點在整個運動過程中用時最少?最少時間是幾秒?

圖1 圖2

【答案】(1);(2);(3)當時,最短時間為3秒,此時

【解析】

(1)根據(jù)題意得A(-1,0),B(3,0),C(0,3),用待定系數(shù)法即可求出拋物線的解析式;

(2)過DDMy軸交BCM,設(shè),則

根據(jù)列方程求解即可;

(3)CCHx軸,過F,根據(jù)時用時最短求解即可.

(1)當時,,

;

時,

∵過A、B,

∴設(shè)

∵過,

(2)過D作DM∥y軸交BC于M

設(shè),則

,即

,

(3)過C作CH∥x軸,過F作

∵在中,,∴

∵CH∥x軸,∴

∴P在整個過程用的時間

∴當時,最短時間為3秒,此時

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB是半圓O的直徑,AC是弦,點P沿BA方向,從點B運動到點A,速度為1cm/s,若AB=10cm,點OAC的距離為4cm.

(1)求弦AC的長;

(2)問經(jīng)過多長時間后,APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.

(1)求拋物線解析式;

(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;

(3)坐標平面內(nèi)是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點.

求反比例函數(shù)和一次函數(shù)的解析式;

的面積;

根據(jù)圖象直接寫出,當為何值時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有七張正面分別標有數(shù)字、、、、、的卡片,除數(shù)字不同外其余全部相同。現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為,則使關(guān)于的方程有實數(shù)根,且不等式組無解的概率是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為正方形外一點,,,則的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形AEFG的頂點E在正方形ABCD的邊CD上;AD的延長線交EF于H點

1試說明:AED∽△EHD

2若E為CD的中點,求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批甲、乙兩種款型時尚的恤衫,其中甲種款型共用7800元,乙種款型共用6000元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少8.

1)甲、乙兩種款型的恤衫各購進多少件?

2)若甲種款型恤衫每件售價比乙種款型恤衫的每件售價少10元,且這批恤衫全部售出后,商店獲利不少于6700元,則甲種恤衫每件售價至少多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請你依據(jù)以上知識,解決下面的實際問題.

為了解5路公共汽車的運營情況,公交部門統(tǒng)計了某天5路公共汽車每個運行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計圖:

(1)求A組對應(yīng)扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;

(2)求這天5路公共汽車平均每班的載客量;

(3)如果一個月按30天計算,請估計5路公共汽車一個月的總載客量,并把結(jié)果用科學記數(shù)法表示出來.

查看答案和解析>>

同步練習冊答案