【題目】我縣某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數(shù)m進行分組統(tǒng)計,結(jié)果如表所示:

(1)求a的值;

(2)若用扇形圖來描述,求分數(shù)在8≤m<9內(nèi)所對應(yīng)的扇形圖的圓心角大小;

(3)將在第一組內(nèi)的兩名選手記為:A1A2,在第四組內(nèi)的兩名選手記為:B1、B2,從這兩組中隨機選取2名選手進行調(diào)研座談,請用畫樹狀圖或列表法求第一組至少有1名選手被選中的概率.

【答案】(1)9;(2)162°;(3) .

【解析】分析:1)根據(jù)被調(diào)查人數(shù)為20和表格中的數(shù)據(jù)可以求得a的值

2)根據(jù)表格中的數(shù)據(jù)可以得到分數(shù)在8m9內(nèi)所對應(yīng)的扇形圖的圓心角;

3)根據(jù)題意可以寫出所有的可能性,從而可以得到第一組至少有1名選手被選中的概率.

詳解:(1)由題意可得

a=20272=9a的值是9;

2)由題意可得

分數(shù)在8m9內(nèi)所對應(yīng)的扇形圖的圓心角為360°×=162°;

3)由題意可得所有的可能性如下圖所示

故第一組至少有1名選手被選中的概率是=,即第一組至少有1名選手被選中的概率是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在全運會射擊比賽的選拔賽中,運動員甲10次射擊成績的統(tǒng)計表和扇形統(tǒng)計圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)


3

2


1)根據(jù)統(tǒng)計表(圖)中提供的信息,補全統(tǒng)計表及扇形統(tǒng)計圖;

2)已知乙運動員10次射擊的平均成績?yōu)?/span>9環(huán),方差為12,如果只能選一人參加比賽,你認為應(yīng)該派誰去?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的集合中:

10,3.14, 0.6,0 75%, (5),

正數(shù)集合:{ …};

負數(shù)集合:{ …};

整數(shù)集合:{ …}

有理數(shù)集合:{ …}

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=- (x-2)2+7,當mxnmn<0時,y的最小值為2m,最大值為2n,則m+n的值為( )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BEAC于點F,交邊AD于點E,連結(jié)DF,若點EAD的中點,則DF的長為__________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某學校一教學樓高AB=15米,在它的正前方有一旗桿EF,從教學樓頂端A測得旗桿頂端E的俯角為30°,旗桿低端F到大樓前梯坎底邊的距離CF=12米,梯坎坡長BC=6.5米,梯坎坡度i=1:2.4,求旗桿EF的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,∠BAC=60°,BC=2DAB的中點,直線BMAC,E是邊CA延長線上一點,將△EDC沿CD翻折得到△EDC,射線DE′交直線BM于點F

1)如圖1,當點E′與點F重合時,求證:四邊形ABEC為平行四邊形;

2)如圖2,延長ED交線段BF于點G

①設(shè)BG=x,GF=y,求yx的函數(shù)關(guān)系式;

②若△DFG的面積為3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,ABAC,AB3cm,BC5cm.PA點出發(fā)沿AD方向勻速運動,速度為1cm/s.連結(jié)PO并延長交BC于點Q,設(shè)運動時間為t(0t5)

(1)t為何值時,四邊形ABQP是平行四邊形?

(2)設(shè)四邊形OQCD的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;

(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.

  備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)開展獻愛心扶貧活動,將購買的60噸大米運往貧困地區(qū)幫扶貧困居民,現(xiàn)有甲、乙兩種貨車可以租用.已知一輛甲種貨車和3輛乙種貨車一次可運送29噸大米,2輛甲種貨車和3輛乙種貨車一次可運送37噸大米.

(1)求每輛甲種貨車和每輛乙種貨車一次分別能裝運多少噸大米?

(2)已知甲種貨車每輛租金為500元,乙種貨車每輛租金為450元,該企業(yè)共租用8輛貨車.請求出租用貨車的總費用w(元)與租用甲種貨車的數(shù)量x(輛)之間的函數(shù)關(guān)系式.

(3)在(2)的條件下,請你為該企業(yè)設(shè)計如何租車費用最少?并求出最少費用是多少元?

查看答案和解析>>

同步練習冊答案