【題目】如圖,點P在⊙O的直徑AB的延長線上,PC為⊙O的切線,點C為切點,連接AC,過點A作PC的垂線,點D為垂足,AD交⊙O于點E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點F(與點C位于直徑AB兩側(cè))在⊙O上,,連接EF,過點F作AD的平行線交PC于點G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.
【答案】(1)證明見解析;(2)證明見解析;(3)EF=3.
【解析】
(1)連接OC,求出OC∥AD,求出OC⊥PC,根據(jù)切線的判定推出即可;
(2)連接BE交GF于H,連接OH,求出四邊形HGDE是矩形,求出DE=HG,F(xiàn)H=EH,即可得出答案;
(3)設(shè)OC交HE于M,連接OE、OF,求出∠FHO=∠EHO=45°,根據(jù)矩形的性質(zhì)得出EH∥DG,求出OM=AE,設(shè)OM=a,則HM=a,AE=2a,AE=DG,DG=3a,
求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=,tanP=,設(shè)OC=k,則PC=2k,根據(jù)OP=k=5求出k=,根據(jù)勾股定理求出a,即可求出答案.
(1)證明:連接OC,
∵PC為⊙O的切線,
∴OC⊥PC,
∵AD⊥PC,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OC=OA,
∴∠PAC=∠OCA,
∴∠DAC=∠PAC;
(2)證明:連接BE交GF于H,連接OH,
∵FG∥AD,
∴∠FGD+∠D=180°,
∵∠D=90°,
∴∠FGD=90°,
∵AB為⊙O的直徑,
∴∠BEA=90°,
∴∠BED=90°,
∴∠D=∠HGD=∠BED=90°,
∴四邊形HGDE是矩形,
∴DE=GH,DG=HE,∠GHE=90°,
∵,
∴∠HEF=∠FEA=∠BEA==45°,
∴∠HFE=90°﹣∠HEF=45°,
∴∠HEF=∠HFE,
∴FH=EH,
∴FG=FH+GH=DE+DG;
(3)解:設(shè)OC交HE于M,連接OE、OF,
∵EH=HF,OE=OF,HO=HO,
∴△FHO≌△EHO,
∴∠FHO=∠EHO=45°,
∵四邊形GHED是矩形,
∴EH∥DG,
∴∠OMH=∠OCP=90°,
∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,
∴∠HOM=∠OHM,
∴HM=MO,
∵OM⊥BE,
∴BM=ME,
∴OM=AE,
設(shè)OM=a,則HM=a,AE=2a,AE=DG,DG=3a,
∵∠HGC=∠GCM=∠GHE=90°,
∴四邊形GHMC是矩形,
∴GC=HM=a,DC=DG﹣GC=2a,
∵DG=HE,GC=HM,
∴ME=CD=2a,BM=2a,
在Rt△BOM中,tan∠MBO=,
∵EH∥DP,
∴∠P=∠MBO,
tanP=,
設(shè)OC=k,則PC=2k,
在Rt△POC中,OP=k=5,
解得:k=,OE=OC=,
在Rt△OME中,OM2+ME2=OE2,5a2=5,
a=1,
∴HE=3a=3,
在Rt△HFE中,∠HEF=45°,
∴EF=HE=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當點E在邊BC上時,求證DE=EB;
(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是正方形ABCD的邊CD的中點,AE的垂直平分線分別交AE、BC于H、G.若CG=7,則正方形ABCD的面積等于_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分別為O、E、H,且DO∥AC,∠B=43°,則圖中角的度數(shù)為47°的角的個數(shù)是( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設(shè)運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在∠ABC的角平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP為等腰三角形(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N是對角線AC上的兩個動點,P是正方形四邊上的任意一點,且AB=4,MN=2,設(shè)AM=x,在下列關(guān)于△PMN是等腰三角形和對應(yīng)P點個數(shù)的說法中,
①當x=0(即M、A兩點重合)時,P點有6個;
②當P點有8個時,x=2﹣2;
③當△PMN是等邊三角形時,P點有4個;
④當0<x<4﹣2時,P點最多有9個.
其中結(jié)論正確的是( 。
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD平分∠ACB交AB于點D,E為AC上一點,且DE∥BC
(1)求證:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要在湖兩岸A,B兩點之間修建一座觀賞橋,由于條件限制,無法直接測量A、B兩點間的距離,于是小明想出來這樣一種做法:在AB的垂線BF上取兩點C、D,使BC=CD,再定出BF的垂線DE,使A,C,E三點在一條直線上,這時測得DE=50米,則AB=_________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務(wù)獻血.獻血時要對獻血者的血型進行檢測,檢測結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結(jié)果進行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)這次隨機抽取的獻血者人數(shù)為 人,m= ;
(2)補全上表中的數(shù)據(jù);
(3)若這次活動中該市有3000人義務(wù)獻血,請你根據(jù)抽樣結(jié)果回答:
從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com