【題目】閱讀下列材料:
在學習“可化為一元一次方程的分式方程及其解法”的過程中,老師提出一個問題:若關于x的分式方程=1的解為正數(shù),求a的取值范圍.
經(jīng)過獨立思考與分析后,小杰和小哲開始交流解題思路如下:
小杰說:解這個關于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.
小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.
(1)請回答: 的說法是正確的,并簡述正確的理由是 ;
(2)參考對上述問題的討論,解決下面的問題:
若關于x的方程的解為非負數(shù),求m的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一塊三角板和半圓形量角器按圖中方式疊放,三角板一邊與量角器的零刻度線所在直線重合,重疊部分的量角器。 )對應的圓心角(∠AOB)為120°,OC的長為2cm,則三角板和量角器重疊部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y= x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設點D的坐標為(m,n),求出m,n之間的關系式.
(4)將射線OA繞原點旋轉(zhuǎn)45°并與拋物線交于點P,求出P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)按要求填空:
①你認為圖②中的陰影部分的正方形的邊長等于 ;
②請用兩種不同的方法表示圖②中陰影部分的面積:
方法1:
方法2:
③觀察圖②,請寫出代數(shù)式(m+n)2,(m﹣n)2,mn這三個代數(shù)式之間的等量關系: ;
(2)根據(jù)(1)題中的等量關系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.
(3)實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖③,它表示了 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,原有一大長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一個“Z”型的工件(工件厚度忽略不計),如圖示,其中AB為20cm,BC為60cm,∠ABC=90°,∠BCD=50°,求該工件如圖擺放時的高度(即A到CD的距離).(結(jié)果精確到0.1m,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y= (x﹣m)2﹣ m2+m的頂點為A,與y軸的交點為B,連結(jié)AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數(shù)關系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當m為何值時,以A,B,D,P為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某公路(可視為軸)的同一側(cè)有A、B、C三個村莊,要在公路邊建一貨棧D,向A、B、C三個村莊送農(nóng)用物資,路線是D→A→B→C→D或D→C→B→A→D.試問在公路邊是否存在一點D,使送貨路線之和最短?若存在,請在圖中畫出點D所在的位置,簡要說明作法;若不存在,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的邊長為4厘米,長為1厘米的線段在的邊上沿方向以1厘米/秒的速度向點運動(運動開始時,點與點重合,點到達點時運動終止),過點、分別作邊的垂線,與的其他邊交于、兩點.線段在運動的過程中,點、、、圍成的圖形的面積為平方厘米,運動的時間為秒.則大致反映與變化關系的圖像是( )
A. .
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com