【題目】如圖,已知直線,直線交于點,交于點,是線段上的一個動點,
(1)若點在線段(、兩點除外)上運動,問,,之間的關系是什么?這種關系是否變化?
(2)若點在線段之外時,,,之間的關系怎樣?說明理由
【答案】(1)∠APB=∠PAC +∠PBD,不會變化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由見解析.
【解析】
(1)當P點在C、D之間運動時,首先過點P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之間的關系不發(fā)生變化;
(2)當點P在C、D兩點的外側運動時,由直線l1∥l2,根據(jù)兩直線平行,同位角相等以及三角形外角的性質(zhì),即可求得∠PAC,∠APB,∠PBD之間的關系.
(1)如圖①,當P點在C、D之間運動時,∠APB=∠PAC+∠PBD.
理由如下:過點P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD,
即∠APB、∠PAC、∠PBD之間的關系不發(fā)生變化;
(2)如圖②,
當點P在C、D兩點的外側運動,且在l1上方時,∠PBD=∠PAC+∠APB.
理由如下:∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
當點P在C、D兩點的外側運動,且在l2下方時,∠PAC=∠PBD+∠APB.
如圖③,
理由如下:∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
科目:初中數(shù)學 來源: 題型:
【題目】某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件。
(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務?
(2)若加工童裝一件可獲利80元, 加工成人裝一件可獲利120元, 那么該車間加工完這批服裝后,共可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為K90的化學賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運動員在C點飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運動員成績?yōu)镈E=85.5米,BD之間的垂直距離h為1米,則該運動員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結果保留一位小數(shù))
A.101.4
B.101.3
C.100.4
D.100.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當△ABC滿足條件時,四邊形DAEF是矩形;
②當△ABC滿足條件時,四邊形DAEF是菱形;
③當△ABC滿足條件時,以D、A、E、F為頂點的四邊形不存在.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.
(1)用“<”連接0,a, b, —1
(2)|b-1|+|a-1|=___
(3)化簡|a —b|+|a-c|-|b|+|b-c|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點E是AB的中點,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新興服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價元,T恤每件定價元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一件夾克送一件T恤;②夾克和T恤都按定價的付款.現(xiàn)某客戶要到該服裝廠購買夾克件,T恤件().
(1)若該客戶按方案①購買,夾克需付款________元,T恤需付款________元(用含的式子表示);若該客戶按方案②購買,夾克需付款______元,T恤需付款______元(用含的式子表示);
(2)若,通過計算說明按方案①、方案②哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線AB、CD相交于點O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.
(1)求∠AOC的度數(shù);
(2)作射線OG⊥OE,試求出∠AOG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com