【題目】如圖,已知直線,直線點,交點,是線段上的一個動點,

1)若點在線段、兩點除外)上運動,問,,之間的關系是什么?這種關系是否變化?

2)若點在線段之外時,,之間的關系怎樣?說明理由

【答案】1)∠APB=PAC +PBD,不會變化;(2)∠PBD=∠PAC+∠APB或∠PAC=PBD+∠APB,理由見解析.

【解析】

1)當P點在CD之間運動時,首先過點PPEl1,由l1l2,可得PEl2l1,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得:∠APB=PAC+PBD,即∠APB、∠PAC、∠PBD之間的關系不發(fā)生變化;

2)當點PC、D兩點的外側運動時,由直線l1l2,根據(jù)兩直線平行,同位角相等以及三角形外角的性質(zhì),即可求得∠PAC,∠APB,∠PBD之間的關系.

1)如圖①,當P點在CD之間運動時,∠APB=PAC+PBD

理由如下:過點PPEl1

l1l2,

PEl2l1

∴∠PAC=1,∠PBD=2

∴∠APB=1+2=PAC+PBD,

即∠APB、∠PAC、∠PBD之間的關系不發(fā)生變化;

2)如圖②,

當點PC、D兩點的外側運動,且在l1上方時,∠PBD=PAC+APB

理由如下:∵l1l2,

∴∠PEC=PBD,

∵∠PEC=PAC+APB

∴∠PBD=PAC+APB

當點PC、D兩點的外側運動,且在l2下方時,∠PAC=PBD+APB

如圖③,


理由如下:∵l1l2

∴∠PED=PAC

∵∠PED=PBD+APB,

∴∠PAC=PBD+APB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件。

(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務?

(2)若加工童裝一件可獲利80, 加工成人裝一件可獲利120, 那么該車間加工完這批服裝后,共可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為K90的化學賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運動員在C點飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運動員成績?yōu)镈E=85.5米,BD之間的垂直距離h為1米,則該運動員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結果保留一位小數(shù))

A.101.4
B.101.3
C.100.4
D.100.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCE,AFE是直線,

AB∥CD∠1=∠2,∠3=∠4

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵∠1 =∠2 (已知)

∴∠1+∠CAF =∠2+ ∠CAF ( )

即: =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側作等邊△ABD,等邊△ACE、等邊△BCF.

(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當△ABC滿足條件時,四邊形DAEF是矩形;
②當△ABC滿足條件時,四邊形DAEF是菱形;
③當△ABC滿足條件時,以D、A、E、F為頂點的四邊形不存在.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)ab,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.

1)用“<”連接0,a, b, —1

2|b1||a1|___

3)化簡|ab||ac||b||bc|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCDAC平分∠BAD,CEADABE

(1)求證:四邊形AECD是菱形;

(2)若點EAB的中點,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新興服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價元,T恤每件定價.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:買一件夾克送一件T恤;夾克和T恤都按定價的付款.現(xiàn)某客戶要到該服裝廠購買夾克件,T件(.

1)若該客戶按方案購買,夾克需付款________元,T恤需付款________元(用含的式子表示);若該客戶按方案購買,夾克需付款______元,T恤需付款______元(用含的式子表示);

2)若,通過計算說明按方案、方案哪種方案購買較為合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線AB、CD相交于點O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.

(1)求∠AOC的度數(shù);

(2)作射線OG⊥OE,試求出∠AOG的度數(shù).

查看答案和解析>>

同步練習冊答案