科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ADE的頂點(diǎn)D,E分別在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,則∠EDC的度數(shù)為( )
A. 17.5° B. 12.5° C. 12° D. 10°
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)課上,張老師舉了下面的例題:
例1 等腰三角形ABC中,∠A=110°,求∠B的度數(shù).
例2 等腰三角形ABC中,∠A=40°,求∠B的度數(shù).
張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:
變式 等腰三角形ABC中,∠A=80°,求∠B的度數(shù).
(1)請你解答以上的變式題.
(2)解(1)后,小敏發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個(gè)數(shù)也可能不同,如果在等腰三角形ABC中,設(shè)∠A=x°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),請你探索x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC中,∠CAB=90°,AC=AB=3,△CDE中,∠CDE=90°,CD=DE=5,連接BE,取BE中點(diǎn)F,連接AF、DF.
(1)如圖1,若C、B、E三點(diǎn)共線,H為BC中點(diǎn).
①直接指出AF與DF的關(guān)系 ;
②直接指出FH的長度 ;
(2)將圖(1)中的△CDE繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)a(如圖2,0°<α<180°),試確定AF與DF的關(guān)系,并說明理由;
(3)在(2)中,若AF=,請直接指出點(diǎn)F所經(jīng)歷的路徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知矩形ABOC中,AC=4,雙曲線y=與矩形兩邊AB、AC分別交于D、E,E為AC邊中點(diǎn).
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使∠DPC=90°?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_______°;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)若BC=4,求陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,
(1)求DE的長;
(2)過點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長;
(3)過點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com