科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長是25cm,AC的長為5cm,求線段AB的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:
(1)在圖1中,先計算地(市)屬項目投資額為 億元,然后將條形統(tǒng)計圖補充完整;
(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應(yīng)的圓心角為β,則m= ,β= 度(m、β均取整數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點B,F,C,E在一條直線上,AB=DE,AB∥DE,∠A=∠D.
(1)求證:△ABC≌△DEF;(2)AC和DF存在怎樣的關(guān)系?(直接寫出答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限,點A(x1,y1),B(x2,y2)都在該函數(shù)的圖象上.
(1)m的取值范圍是 ,函數(shù)圖象的另一支位于第一象限,若x1>x2,y1>y2,則點B在第 象限;
(2)如圖,O為坐標(biāo)原點,點A在該反比例函數(shù)位于第一象限的圖象上,點C與點A關(guān)于x軸對稱,若△OAC的面積為6,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(-2,1),B(-3,4),C(-1,3),過點(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對稱圖形△;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點P(m,n),則點P關(guān)于直線的對稱點P1的坐標(biāo)為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】請在下面括號里補充完整證明過程:
已知:如圖,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于點E,交CB于點F,且∠CEF=∠CFE.求證:CD⊥AB.
證明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (對頂角相等)
∴∠CFE=∠3(等量代換)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已證) ∴( )+( )=90°(等量代換)
在△AED中, ∠ADE=90°( 三角形內(nèi)角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點D,E,F分別是線段AD和AB上的動點,則BE+EF的最小值是___
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com