相關習題
 0  359347  359355  359361  359365  359371  359373  359377  359383  359385  359391  359397  359401  359403  359407  359413  359415  359421  359425  359427  359431  359433  359437  359439  359441  359442  359443  359445  359446  359447  359449  359451  359455  359457  359461  359463  359467  359473  359475  359481  359485  359487  359491  359497  359503  359505  359511  359515  359517  359523  359527  359533  359541  366461 

科目: 來源: 題型:

【題目】已知:如圖,菱形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且BE=BF=DH=DG.

(1)求證:四邊形EFGH是矩形;

(2)已知∠B=60°,AB=6.

請從A,B兩題中任選一題作答,我選擇   題.

A題:當點EAB的中點時,矩形EFGH的面積是   

B題:當BE=   時,矩形EFGH的面積是8

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,等邊邊長為6的中線,為線段(不包括端點、上一動點,以為一邊且在左下方作如圖所示的等邊,連結(jié)

1)點在運動過程中,線段始終相等嗎?說說你的理由;

2)若延長,使得,如圖2,問:

①求出此時的長;

②當點在線段的延長線上時,判斷的長是否為定值,若是請直接寫出的長;若不是請簡單說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】早黑寶是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植.清徐縣某葡萄種植基地2016年種植早黑寶”1002018早黑寶的種植面積達到225畝.

(1)求該基地這兩年早黑寶種植面積的平均增長率;

(2)市場調(diào)查發(fā)現(xiàn),當早黑寶售價為20/千克時,每天能售出200千克,售價每降低1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,已知該基地早黑寶的平均成本價為12/千克,若使銷售早黑寶每天獲利1800元,則售價應降低多少元?

查看答案和解析>>

科目: 來源: 題型:

【題目】太原是一座具有4700多年歷史、2500年建城史的歷史古都,系有錦繡太原城的美譽,在我可愛的家鄉(xiāng)主題班會中,主持人準備了晉祠園林”、“崇山大佛”、“龍山石窟”、“凌霄雙塔這四處景點的照片各一張,并將它們背面朝上放置(照片背面完全相同),甲同學從中隨機抽取一張,不放回,乙再從剩下的照片中隨機抽取一張,若要根據(jù)抽取的照片作相關景點介紹,求甲、乙兩人中恰好有一人介紹晉祠園林的概率.(提示:可用照片序號列表或畫樹狀圖)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,AEBC于點E,點F,G分別是AB,AD的中點,連接EF,F(xiàn)G,若∠EFG=90°,則FG的長為_____.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD內(nèi)有一點F,F(xiàn)BFC分別平分∠ABC和∠BCD,點E為矩形ABCD外一點,連接BE,CE.現(xiàn)添加下列條件:①EBCF,CEBF;BE=CE,BE=BF;BECF,CEBE;BE=CE,CEBF,其中能判定四邊形BECF是正方形的共有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】Rt△ABC中,AB=AC=2,∠A=90°,DBC中點,點E,F分別在AB,AC上,且BE=AF,

1)求證:ED=FD,

2)求證:DF⊥DE

3)求四邊形AFDE的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.

請?zhí)羁胀瓿上铝凶C明.

證明:如圖,作Rt△ABC的斜邊上的中線CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等邊三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目: 來源: 題型:

【題目】為宣傳掃黑除惡專項行動,社區(qū)準備制作一幅宣傳版面,噴繪時為了美觀,要在矩形圖案四周外圍增加一圈等寬的白邊,已知圖案的長為2米,寬為1米,圖案面積占整幅宣傳版面面積的90%,若設白邊的寬為x米,則根據(jù)題意可列出方程( )

A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1

C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在矩形ABCD中,DB=6,AD=3,在RtPEF中,∠PEF=90°,EF=3,PF=6,PEF(點F和點A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將RtPEFA以每秒1個單位的速度向射線AB方向勻速平移,當點F與點B重合時停止運動,設運動時間為t秒,

解答下列問題:

(1)如圖1,連接PD,填空:∠PFD= 四邊形PEAD的面積是 ;

(2)如圖2,當PF經(jīng)過點D時,求 PEF運動時間t的值

(3)在運動的過程中,設PEFABD重疊部分面積為S,請求出St的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案