科目: 來源: 題型:
【題目】類比探究:
(1)如圖1,等邊△ABC內(nèi)有一點P,若AP=8,BP=15,CP=17,求∠APB的大。唬ㄌ崾荆簩ⅰABP繞頂點A旋轉(zhuǎn)到△ACP′處)
(2)如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點,且∠EAF=45°.求證:EF2=BE2+FC2;
(3)如圖3,在△ABC中,∠C=90°,∠ABC=30°,點O為△ABC內(nèi)一點,連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,若AC=1,求OA+OB+OC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】圖1,拋物線與x軸交于A(﹣1,0),B(3,0),頂點為D(1,﹣4),點P為y軸上一動點.
(1)求拋物線的解析式;
(2)在y軸的負(fù)半軸上是否存在點P,使△BDP是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
(3)如圖2,點在拋物線上,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從C點出發(fā)沿CB邊向點B以2cm/s的速度移動.
(1)、如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)、點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運動的時間;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(5,0)、C(0,﹣5)三點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<5時,y的取值范圍為 ;
(3)點P為拋物線上一點,若S△PAB=21,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)試說明△COD是等邊三角形;
(2)當(dāng)a=150°時,OB=3,OC=4,試求OA的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上.
(1)以點A為旋轉(zhuǎn)中心,將△ABC繞點A順時針旋轉(zhuǎn)90°得到△AB1C1,畫出△AB1C1;
(2)畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2,若點B的坐標(biāo)為(-2,-2),則點B2的坐標(biāo)為_________.
(3)若△A2B2C2可看作是由△AB1C1繞點P順時針旋轉(zhuǎn)90°得到的,則點P的坐標(biāo)為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊三角形△ABC的邊長為6,l是AC邊上的高BF所在的直線,點D為直線l上的一動點,連接AD,并將AD繞點A逆時針旋轉(zhuǎn)60°至AE,連接EF,則EF的最小值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>c;⑤a+b>m(am+b)(m≠1的實數(shù)),其中結(jié)論正確的有( )
A.①②③B.②③⑤C.②③④D.③④⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三角形ABC中,AB=6cm,BC=4cm,AC=3cm將三角形ABC沿著與AB垂直的方向向上平移3cm,得到三角形FDE.則圖中陰影部分的面積為( )
A.12cm2B.18cm2C.24cm2D.26cm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com