科目: 來源: 題型:
【題目】如圖所示,菱形AOBC的頂點B在y軸上,頂點A在反比例函數(shù)y=的圖象上,邊AC,OA分別交反比例函數(shù)y=的圖象于點D,點E,邊AC交x軸于點F,連接CE.已知四邊形OBCE的面積為12,sin∠AOF= ,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E是AB中點,在AD上取一點G,以點G為圓心,GD的長為半徑作圓,該圓與BC邊相切于點F,連接DE,EF,則圖中陰影部分面積為( 。
A. 3πB. 4πC. 2π+6D. 5π+2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù) y=ax2+bx 的圖象與 x 軸交于點 O(0,0)和 點 B,拋物線的對稱軸是直線 x=3.點 A 是拋物線在第一象限上的一個動點, 過點 A 作 AC⊥x 軸,垂足為 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求該二次函數(shù)的解析式;
(2)拋物線的對稱軸與 x 軸交于點 M.連接 AM,點 N 是線段 OA 上的一點.當(dāng) ∠AMN=∠AOM 時,求點 N 的坐標(biāo);
(3)點 P 是拋物線上的一個動點.點 Q 是 y 軸上的一動點.當(dāng)以 A,B,P,Q 四個點為頂點的四邊形為平行四邊形時,直接寫出點 P 坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖1,將:矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的△,過點C作的平行線,與的延長線交于點E,則四邊形的形狀是 .
(2)創(chuàng)新小組將圖1中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使B、A、D三點在同一條直線上,得到如圖3所示的△,連接,取的中點F,連接AF并延長至點G,使FG=AF,連接CG、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將△ABC沿著BD方向平移,使點B與點A重合,此時A點平移至點,與相交于點H,如圖4所示,連接,試求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】“守護碧水藍天,守護我們的家園”,某市為了改善城市環(huán)境,預(yù)算 116 萬元購進 A、B 兩種型號的清掃機,已知 A 型號清掃機的單價比 B 型號清掃 機單價的 多 1.2 萬元,若購進 2 臺 A 型號清掃機和 3 臺 B 型號清掃機花費 54.6 萬元.
(1)求 A 型號清掃機和 B 型號清掃機的單價分別為多少萬元;
(2)該市通過考察決定先購進兩種型號的清掃機共 10 臺,且 B 型號的清掃機 數(shù)量不能少于 A 型號清掃機的 1.5 倍,該市怎樣購買才能花費最少?最少花費 多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)為了方便游客登上山頂,計劃從山底A點到山頂C點修建觀光纜車,此時從A點觀測C點的仰角為45度;施工組經(jīng)過實地勘察后,為了安全,決定將觀光纜車的鋼索改為AD、CD兩段,D點是半山腰上距離地面AB30米的一個支點,從A點觀測D點的仰角為30°.從D點觀測山頂C點的仰角為75°,請你通過自己學(xué)過的知識來求出這座山的高度BC約為多少米.(結(jié)果保留整數(shù).可能用到的數(shù)據(jù):≈1.73.sin75°≈0.96.cos75°≈0.26.tan75°≈3.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點 B,與反比例函數(shù) y=(k>0)圖象交于點 D 和點 E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點 P 為線段 BE 上的一個動點,過點 P 作 x 軸的平行線,當(dāng)△CDE 被這條平行線分成面積相等的兩部分時,求點 P 的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點D,交AC于點F,過點C作CE∥AB,且∠CAD=∠CAE.
(1)求證:AE是⊙O的切線;
(2)若AB=8,AC=6,求CE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)興趣小組為了解全校學(xué)生星期六和星期日在家使用手機的情況,興趣小組隨機抽取若干名學(xué)生,調(diào)查他們周末兩天的使用手機時間,并根據(jù)調(diào)查結(jié)果繪制了下面兩幅不完整的統(tǒng)計表和統(tǒng)計圖.根據(jù)圖表信息,解答下列問題:
閱讀時間 (小時) | 頻數(shù) (人) | 頻率 |
1≤x<2 | 9 | 0.15 |
2≤x<3 | a | m |
3≤x<4 | 18 | 0.3 |
4≤x<5 | 12 | n |
5≤x<6 | 6 | 0.1 |
合計 | b | 1 |
(1)填空:a= ,b= ,m= ,n= :
(2)將頻數(shù)分布直方圖補充完整;
(3)這個中學(xué)的學(xué)生共有1200人,根據(jù)上面信息來估算全校學(xué)生中周末兩天使用手機時間不低于4小時的學(xué)生大約有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,CB=2,點E為線段AB上的動點,將△CBE沿CE折疊,使點B落在矩形內(nèi)點F處,下列結(jié)論正確的是_____(寫出所有正確結(jié)論的序號)
①當(dāng)E為線段AB中點時,AF∥CE;
②當(dāng)E為線段AB中點時,AF=;
③當(dāng)A、F、C三點共線時,AE=;
④當(dāng)A、F、C三點共線時,△CEF≌△AEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com