科目: 來源: 題型:
【題目】為了解初三學生的體育鍛煉時間,小華調查了某班45名同學一周參加體育鍛煉的情況,并把它繪制成折線統計圖(如圖所示).那么關于該班45名同學一周參加體育鍛煉時間的說法錯誤的是( )
A.眾數是9
B.中位數是9
C.平均數是9
D.鍛煉時間不低于9小時的有14人
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數y =﹣4x﹣4的圖像與x軸、y軸分別交于A、C兩點,拋物線y=的圖像經過A、C兩點,且與x軸交于點B.
(1)求拋物線的函數表達式;
(2)在拋物線的對稱軸上找一點E,使點E到點A的距離與到點C的距離之和最小,求出此點E的坐標;
(3)作直線MN平行于x軸,分別交線段AC、BC于點M、N.問在x軸上是否存在點P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:EF +AE= BF ;
(2)求證:△PDA∽△PCD ;
(3)若AC=6,BC=8,求線段PD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知矩形ABCD中,∠ACB=30°,將矩形ABCD繞點A旋轉得到矩形AB′C′D′,使點B的對應點B′落在AC上,B′C′交AD于點E,在B′C′上取點F,使FB′=AB.
(1)求證:BB′= FB′;
(2)求∠FBB′的度數 ;
(3)已知AB=4,求△BFB′面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】為推廣陽光體育“大課間”活動,我市某中學決定在學生中開設A:實心球.B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統計圖.請結合圖中的信息解答下列問題:
(1)在這項調查中,共調查了多少名學生?
(2)請計算本項調查中喜歡“立定跳遠”的學生人數和所占百分比,并將兩個統計圖補充完整;
(3)若調查到喜歡“跳繩”的5名學生中有3名男生,2名女生.現從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知A1,A2,A3,…An是x軸上的點,且OA1=A1A2=A2A3=…=An-1An=1,分別過點A1,A2,A3,…An作x軸的垂線交反比例函數y=(x>0)的圖象于點B1,B2,B3,…Bn,過點B2作B2P1⊥A1B1于點P1,過點B3作B3P2⊥A2B2于點P2……,記△B1P1B2的面積為S1,△B2P2B3的面積為S2……,△B6P6B7的面積為S6,則S1+S2+S3+…+S6=______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H.給出下列結論:
①△ABE≌△DCF;②∠PDF=15°;③;④,其中正確的結論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】(概念認識)
若以三角形某邊上任意一點為圓心,所作的半圓上的所有點都在該三角形的內部或邊上,則將符合條件且半徑最大的半圓稱為該邊關聯的極限內半圓.
如圖①,點P是銳角△ABC的邊BC上一點,以P為圓心的半圓上的所有點都在△ABC的內部或邊上.當半徑最大時,半圓P為邊BC關聯的極限內半圓.
(初步思考)
(1)若等邊△ABC的邊長為1,則邊BC關聯的極限內半圓的半徑長為 .
(2)如圖②,在鈍角△ABC中,用直尺和圓規(guī)作出邊BC關聯的極限內半圓(保留作圖痕跡,不寫作法).
(深入研究)
(3)如圖③,∠AOB=30°,點C在射線OB上,OC=6,點Q是射線OA上一動點.在△QOC中,若邊OC關聯的極限內半圓的半徑為r,當1≤r≤2時,求OQ的長的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,過點 D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為2,∠A=60°,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校航模小組打算制作模型飛機,設計了如圖所示的模型飛機機翼圖紙.圖紙中AB∥CD,均與水平方向垂直,機翼前緣AC、機翼后緣BD與水平方向形成的夾角度數分別為45°、27°,AB=20cm,點D到直線AB的距離為30cm.求機翼外緣CD的長度.(參考數據:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com