科目: 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BA=BC,BD交AC于點(diǎn)E,點(diǎn)F在DB的延長線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)若BC=2,BE=4,求⊙O半徑r.
查看答案和解析>>
科目: 來源: 題型:
【題目】“震災(zāi)無情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運(yùn)往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運(yùn)輸費(fèi)4000元,乙種貨車每輛需付運(yùn)輸費(fèi)3600元.民政局應(yīng)選擇哪種方案可使運(yùn)輸費(fèi)最少?最少運(yùn)輸費(fèi)是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行 隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2), 請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為________人,圖2中,_________;
(2)圖1中的條形統(tǒng)計(jì)圖中B等級的人數(shù);
(3)在圖2中的扇形統(tǒng)計(jì)圖中,求“C.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計(jì),2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對“垃圾分類知識”的知曉程度為“A.非常了解”的市民約有多少萬人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(diǎn)(B點(diǎn)除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過點(diǎn)C(3,4)的直線交軸于點(diǎn)A,∠ABC=90°,AB=CB,曲線過點(diǎn)B,將點(diǎn)A沿軸正方向平移個(gè)單位長度恰好落在該曲線上,則的值為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO沿x軸向右滾動到△AB1C1的位置,再到△A1B1C2的位置……依次進(jìn)行下去,若已知點(diǎn)A(4,0),B(0,3),則點(diǎn)C100的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】(性質(zhì)探究)
如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE平分∠BAC,交BC于點(diǎn)E.作DF⊥AE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G.
(1)判斷△AFG的形狀并說明理由.
(2)求證:BF=2OG.
(遷移應(yīng)用)
(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時(shí),求的值.
(拓展延伸)
(4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時(shí),請直接寫出tan∠BAE的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A,C分別是直線y=﹣x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣2,0),點(diǎn)D是邊AC上的一點(diǎn),DE⊥BC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對稱,連結(jié)DF,EF.設(shè)點(diǎn)D的橫坐標(biāo)為m,EF2為l,請?zhí)骄浚?/span>
①線段EF長度是否有最小值.
②△BEF能否成為直角三角形.
小明嘗試用“觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用”的方法進(jìn)行探究,請你一起來解決問題.
(1)小明利用“幾何畫板”軟件進(jìn)行觀察,測量,得到l隨m變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數(shù)類別.
(2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗(yàn)證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長度的最小值.
(3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時(shí)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年5月16日,“錢塘江詩路”航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當(dāng)游輪到達(dá)建德境內(nèi)的“七里揚(yáng)帆”景點(diǎn)時(shí),一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時(shí)間記為t(h),兩艘輪船距離杭州的路程s(km)關(guān)于t(h)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯
(1)寫出圖2中C點(diǎn)橫坐標(biāo)的實(shí)際意義,并求出游輪在“七里揚(yáng)帆”?康臅r(shí)長.
(2)若貨輪比游輪早36分鐘到達(dá)衢州.問:
①貨輪出發(fā)后幾小時(shí)追上游輪?
②游輪與貨輪何時(shí)相距12km?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)E是AD的中點(diǎn).
(1)求證:∠CAD=∠CBA.
(2)求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com