科目: 來源: 題型:
【題目】y=x2+(1﹣a)x+1是關(guān)于x的二次函數(shù),當(dāng)x的取值范圍是1≤x≤3時,y在x=1時取得最大值,則實(shí)數(shù)a的取值范圍是( 。
A. a≤﹣5B. a≥5C. a=7D. a≥7
查看答案和解析>>
科目: 來源: 題型:
【題目】以下說法合理的是( 。
A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎
C. 某射擊運(yùn)動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點(diǎn)在△ABC的邊上,若AB=AC=2,求DE的長;
(2)如圖,在(1)的條件下,連結(jié)AG、AF分別交DE于M、N兩點(diǎn),求MN的長;
(3)如圖,在△ABC中,AB=AC=BN=2,∠BAC=108°,若AM=AN,請直接寫出MN的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一張長方形紙片,AB=CD=a,AD=BC=b(a<b<2a).
將這張紙片沿著過點(diǎn)A的折痕翻折,使點(diǎn)B落在AD邊上的點(diǎn)F,折痕交BC于點(diǎn)E,將折疊后的紙片再次沿著另一條過點(diǎn)A的折痕翻折,點(diǎn)E恰好與點(diǎn)D重合,此時折痕交DC于點(diǎn)G.
(1)在圖中確定點(diǎn)F、點(diǎn)E和點(diǎn)G的位置;
(2)連接AE,則∠EAB= °;
(3)用含有a、b的代數(shù)式表示線段DG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y1=kx+b與反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點(diǎn).
(1)求直線AB的解析式及△OAB面積;
(2)根據(jù)圖象寫出當(dāng)y1<y2時,x的取值范圍;
(3)若點(diǎn)P在x軸上,求PA+PB的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等腰三角形ADC,AD=AC,B是線段DC上的一點(diǎn),連結(jié)AB,且有AB=DB.
(1)求證:△ADB∽△CDA;
(2)若DB=2,BC=3,求AD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某中學(xué)為了了解孩子們對《中國詩詞大會》、《挑戰(zhàn)不可能》、《最強(qiáng)大腦》、《超級演說家》、《地理中國》五種電視節(jié)目的喜愛程度,隨機(jī)在七、八、九年級抽取了部分學(xué)生進(jìn)行調(diào)查(每人只能選擇一種喜愛的電視節(jié)目),并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次調(diào)查中共抽取了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計圖.
(3)在扇形統(tǒng)計圖中,喜愛《地理中國》節(jié)目的人數(shù)所在的扇形的圓心角是 度.
查看答案和解析>>
科目: 來源: 題型:
【題目】浙江實(shí)施“五水共治“以來,越來越重視節(jié)約用水,某地對居民用水按階梯水價方式進(jìn)行收費(fèi),人均月生活用水收費(fèi)標(biāo)準(zhǔn)如圖所示,圖中x表示人均月生活用水的噸數(shù),y表示收取的人均月生活用水費(fèi)(元),請根據(jù)圖象信息,回答下列問題.
(1)請寫出y與x的函數(shù)關(guān)系式;
(2)若某個家庭有5人,響應(yīng)節(jié)水號召,計劃控制1月份的生活用水費(fèi)不超過76元,則該家庭這個月最多可以用多少噸水?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,以AD為對角線作正方形AEDF,DE交AB于點(diǎn)M,DF交AC于點(diǎn)N,連結(jié)EF,EF分別交AB、AD、AC于點(diǎn)G、點(diǎn)O、點(diǎn)H.
(1)求證:EG=HF;
(2)當(dāng)∠BAC=60°時,求的值;
(3)設(shè),△AEH和四邊形EDNH的面積分別為S1和S2,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)y1=ax+b(a、b為常數(shù),且ab≠0)的圖象如圖所示,y2=bx+a,設(shè)y=y1·y2.
(1)當(dāng)b=-2a時,
①若點(diǎn)(1,4)在函數(shù)y的圖象上,求函數(shù)y的表達(dá)式;
②若點(diǎn)(x1,p)和(x2,q)在函數(shù)y的圖象上,且,比較p,q的大小;
(2)若函數(shù)y的圖象與x軸交于(m,0)和(n,0)兩點(diǎn),求證:m=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com