(本小題滿分14分)
已知函數(shù)是奇函數(shù).
(1)求實數(shù)的值;
(2)判斷函數(shù)在上的單調性,并給出證明;
(3)當時,函數(shù)的值域是,求實數(shù)與的值。
(1)(舍去)或.此時函數(shù)定義域為 ,關于原點對稱。
(2)由單調函數(shù)的定義得:當時,在上是減函數(shù).
同理當時,在上是增函數(shù).
(3),.
解析試題分析:(1)由已知條件得
對定義域中的均成立.…………………………1分
即 …………………2分
對定義域中的均成立. 即(舍去)或.
此時函數(shù)定義域為 ,關于原點對稱。 ……………4分
(2)由(1)得
設,
當時,
. ………………6分
當時,,即.………………7分
當時,在上是減函數(shù). ……………………………8分
同理當時,在上是增函數(shù). ……………………9分
(3)函數(shù)的定義域為,
① 當時, .
在為增函數(shù),
要使值域為,則(無解) ………………11分
②當時, .
在為減函數(shù),
要使的值域為, 則
,. ……………14分
考點:本題主要考查對數(shù)函數(shù)的性質,函數(shù)的單調性。
點評:綜合題,本題以復合對數(shù)函數(shù)為載體,綜合考查對數(shù)函數(shù)的性質,函數(shù)的單調性,函數(shù)的奇偶性,對考生數(shù)學式子變形能力要求較高。
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
若函數(shù)對任意的實數(shù),,均有,則稱函數(shù)是區(qū)間上的“平緩函數(shù)”.
(1) 判斷和是不是實數(shù)集R上的“平緩函數(shù)”,并說明理由;
(2) 若數(shù)列對所有的正整數(shù)都有 ,設,
求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分) 已知是方程的兩個不等實根,函數(shù)的定義域為.
⑴當時,求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設函數(shù),
若對任意的,總存在,使得成立,
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(10分)設為奇函數(shù),為常數(shù).
(1)求的值;
(2)證明在區(qū)間內單調遞增;
(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com