【題目】已知, 的導函數(shù).

Ⅰ)求的極值;

Ⅱ)若時恒成立,求實數(shù)的取值范圍.

【答案】Ⅰ)當時,有極小值 ,無極大值;(

【解析】試題分析:

()結合導函數(shù)分類討論可得當時, 無極值;當 時,有極小值.

()結合題意構造新函數(shù),結合函數(shù)的性質可得實數(shù)的取值范圍是.

試題解析:

(Ⅰ), , ,

時, 恒成立, 無極值;

時, ,解得,

,得;由,得,

所以當時,有極小值.

(Ⅱ)令,則,注意到

解法一: ,

①當時,由,得,即上單調(diào)遞增,

所以時, ,從而上單調(diào)遞增,

所以時, ,即恒成立.

②當時,由解得,即上單調(diào)遞減,

所以時, ,從而上單調(diào)遞減,

所以時, ,即不成立.

綜上, 的取值范圍為.

解法二:令,則,由,得; ,得

,即恒成立,

時, ,于是時, 上單調(diào)遞增,

所以,即成立.

時,由可得.

,

故當時, ,

于是當時, 單調(diào)遞減, , 不成立.

綜上, 的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,分E,F(xiàn),G別為PD,AB,CD的中點,PD⊥平面ABCD
(1)證明AC⊥PB
(2)證明:平面PBC∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有相同的切線,求的值;

(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍.

(3)若,恒有成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù) 的圖象向左平移 個單位長度,則平移后圖象的對稱軸方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級夢數(shù)列”.

(1)若是“級夢數(shù)列”且.求: 的值;

(2)若是“級夢數(shù)列”且滿足 ,求的最小值;

(3)若是“0級夢數(shù)列”且,設數(shù)列的前項和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是偶函數(shù);
③當a<0時,若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當a>0時,函數(shù)y=F(x)﹣2有4個零點.
其中正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線 為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為

(1)求曲線的普通方程和直線的直角坐標方程;

(2)過點且與直線平行的直線 兩點,求點, 兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是一個非空集合, 是定義在上的一個運算.如果同時滿足下述四個條件:

(1)對于,都有;

(2)對于,都有;

(3)對于,使得

(4)對于,使得(注:“”同(iii)中的“”).

則稱關于運算構成一個群.現(xiàn)給出下列集合和運算:

是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運算;④是非零復數(shù)集合, 為乘法. 其中關于運算構成群的序號是___________(將你認為正確的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前n項和為, ,數(shù)列滿足: , ,數(shù)列的前n項和為

(1)求數(shù)列的通項公式及前n項和;

(2)求數(shù)列的通項公式及前n項和;

(3)記集合,若M的子集個數(shù)為16,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案