15.某分公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交納6元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為x2萬(wàn)件.
(Ⅰ)求分公司一年的利潤(rùn)L(萬(wàn)元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)L最大?

分析 (Ⅰ)根據(jù)題意先求出每件產(chǎn)品的利潤(rùn),再乘以一年的銷量,便可求出分公司一年的利潤(rùn)L與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式,但應(yīng)當(dāng)注意變量的范圍;
(Ⅱ)運(yùn)用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,借以判斷最值.

解答 解:(Ⅰ)由題意可得,L=x2(x-9)=x3-9x2,9≤x≤11.
(Ⅱ)L′=3x2-18x=3x(x-6),
令L′=0,∴x=0或x=6,
∴L′>0在[9,11]上恒成立,即L在[9,11]上單調(diào)遞增,
∴當(dāng)x=11時(shí),L取得最大值,
∴當(dāng)每件產(chǎn)品的售價(jià)為11元時(shí),分公司一年的利潤(rùn)L最大.

點(diǎn)評(píng) 本題主要考查了函數(shù)的導(dǎo)數(shù)的求法,以及利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性,并用以求得函數(shù)的最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.三棱錐S-ABC中,側(cè)棱SA⊥平面ABC,底面ABC是邊長(zhǎng)為$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,則該三棱錐的外接球體積等于$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在體積為$\sqrt{3}$的三棱錐S-ABC中,AB=BC=2,∠ABC=120°,SA=SC,且平面SAC⊥平面ABC,若該三棱錐的四個(gè)頂點(diǎn)都在同一球面上,則該球的體積為( 。
A.$\frac{20\sqrt{5}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.20πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.(文科做)$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(3$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,則$\frac{sin2x}{1+cos2x}$的值為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在反證法中,否定結(jié)論“至多有兩個(gè)解”的說(shuō)法中,正確是(  )
A.有一個(gè)解B.有兩個(gè)解C.至少有三個(gè)解D.至少有兩個(gè)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在直三棱柱ABC-A1B1C1中,BC=4,∠BAC=90°,AA1=2,則此三棱柱外接球的表面積為20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,三棱柱A1B1C1-ABC中,已知D,E,F(xiàn)分別為AB,AC,AA1的中點(diǎn),設(shè)三棱錐A-FED的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1:V2的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{24}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量身高,被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第七組的人數(shù)為3人.
(Ⅰ)求第六組的頻率;
(Ⅱ)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取2人,記他們的身高分別為x,y,事件E={|x-y|≤5},求事件E的頻率P(E);
(Ⅲ)對(duì)抽取的50名學(xué)生作調(diào)查,得到以下2×2列聯(lián)表:
喜歡打籃球不喜歡打籃球總計(jì)
身高超過(guò)175cm20626
身高不超175cm51924
總計(jì)252550
根據(jù)此表判斷是否有99.9%的把握認(rèn)為喜歡打籃球和身高超過(guò)175cm有關(guān)系.
參考公式::K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=(a+b)(c+d)(a+c)(b+d))
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.7022.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,邊長(zhǎng)為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒100粒豆子,落在陰影區(qū)域內(nèi)的豆子共60粒,據(jù)此估計(jì)陰影區(qū)域的面積為$\frac{12}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案