16.已知a>0,則5-2a-$\frac{8}{a}$的最大值為-3.

分析 利用基本不等式求出2a+$\frac{8}{a}$的最小值,然后求解表達(dá)式的最大值即可.

解答 解:a>0,則2a+$\frac{8}{a}$≥2$\sqrt{2a×\frac{8}{a}}$=8.當(dāng)且僅當(dāng)a=2時(shí)取等號(hào).
則5-2a-$\frac{8}{a}$≤5-8=-3.
故答案為:-3.

點(diǎn)評(píng) 本題考查基本不等式在最值中的應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(x+$\frac{a}{{x}^{2}}$)9的二項(xiàng)展開(kāi)式中含x6項(xiàng)的系數(shù)是36,則實(shí)數(shù)a=( 。
A.1B.-1C.$\frac{\sqrt{2}}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求和:1+x2+x4+x6+…+x20(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在四邊形ABCD中,若$\overrightarrow{AB}$$•\overrightarrow{BC}$=$\overrightarrow{BC}$$•\overrightarrow{CD}$=$\overrightarrow{CD}$$•\overrightarrow{DA}$=$\overrightarrow{DA}$$•\overrightarrow{AB}$,則四邊形ABCD的形狀是( 。
A.矩形B.菱形C.平行四邊形D.任意四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=lgsinx的定義域是{x|2kπ<x<2kπ+π,k∈Z},函數(shù)y=$\frac{5tanx}{1+2sinx}$的定義域是{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一個(gè)等比數(shù)列共有3m項(xiàng),若前2m項(xiàng)和為15,后2m項(xiàng)之和為60,則中間m項(xiàng)的和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若(x-1)5+x10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a3的值是-80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.要使$\root{3}{a}$+$\root{3}$<$\root{3}{a+b}$成立,則a,b應(yīng)滿足$\left\{\begin{array}{l}{a>0}\\{b<0}\\{|a|>|b|}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b>0}\\{|b|>|a|}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{b<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.當(dāng)n≥2,n∈N*時(shí),設(shè)f(n)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)•…•(1-$\frac{1}{{n}^{2}}$).
(Ⅰ)求f(2)、f(3)、f(4)的值;
(Ⅱ)猜想f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案