分析 作AH⊥BM交BM的延長線于H,求出|BM|,|AH|,即可求得△ABC的面積.
解答 解:根據題意設A(a2,a),B(b2,b),C(c2,c),不妨設a>c,
∵M為邊AC的中點,∴$M({\frac{{{a^2}+{c^2}}}{2},\frac{a+c}{2}})$,又BM∥x軸,則$b=\frac{a+c}{2}$,
故$|{BM}|=|{\frac{{{a^2}+{c^2}}}{2}-{b^2}}|=|{\frac{{{a^2}+{c^2}}}{2}-\frac{{{{({a+c})}^2}}}{4}}|=\frac{{{{({a-c})}^2}}}{4}=2$,
∴(a-c)2=8,即$a-c=2\sqrt{2}$,
作AH⊥BM交BM的延長線于H.
故${S_{△ABC}}=2{S_{△ABM}}=2×\frac{1}{2}|{BM}|•|{AH}|=2|{a-b}|=2|{a-\frac{a+c}{2}}|=a-c=2\sqrt{2}$.
故答案為:$2\sqrt{2}$.
點評 本題考查三角形面積的計算,考查拋物線的方程,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k>2 | B. | 0<k<2 | C. | 0<k<4 | D. | k>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b | B. | a<b | C. | a=b | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com