在數(shù)列{an}中,對于任意的n∈N+,都有
an+2-an+1
an+1-an
=k(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下面對“等差比數(shù)列”的判斷:
①等差數(shù)列一定是“等差比數(shù)列”;
②等比數(shù)列一定是“等差比數(shù)列”;
③通項公式為an=a•bn+c(a≠0,b≠0,1)的數(shù)列一定是“等差比數(shù)列”.
其中正確的個數(shù)是( 。
A、0B、1C、2D、3
考點:等比數(shù)列的性質,等差數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差比數(shù)列的定義,對于①②只要舉常數(shù)列即可驗證它是錯的;對于③,其中k=b即可得出結論.
解答: 解:當?shù)炔顢?shù)列為常數(shù)列時不滿足題設的條件,故①不正確.
當?shù)缺葦?shù)列為常數(shù)列時,不滿足題設,故②不正確.
把an=a•bn+c代入
an+2-an+1
an+1-an
,結果為b,為常數(shù),故③正確.
故選B.
點評:本題考查新定義,考查分析解決問題的能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)為定義在R上的奇函數(shù),當x>0時,f(x)=xlnx,則不等式f(x)<-e的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于實數(shù)x,符號[x]不超過x的最大整數(shù),例如[π]=3,[-3.5]=-4,定義函數(shù)f(x)=x-[x],則下列結論正確的是( 。
A、方程f(x)=k(k∈R)有且僅有一個解
B、函數(shù)f(x)的最大值為1
C、函數(shù)f(x)是增函數(shù)
D、函數(shù)f(x)的最小值為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某天甲、乙兩同學約好在晚上8點到9點之間在某地會面,假定兩人到達指定地點的時刻是等可能的且相互獨立的,并約定先到者等待后到者時間是15分鐘,之后就可以離去,問兩人能夠見面的概率有多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點P在直線x+y-1=0上運動,Q(1,1)為定點,當|PQ|最小時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a2,b2,c2成等差數(shù)列,則角B的范圍為( 。
A、(0,
π
2
B、(0,
π
3
]
C、[
π
3
,
π
2
D、(
π
3
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,若函數(shù)f(x)=
(1-i)2i,x≤0
a-2cosx,x>0
的圖象是一條連續(xù)不斷的曲線,則實數(shù)a的值為( 。
A、4B、2C、0D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中,圓C:(x-a)2+(y-b)2=10(a>b>0)在直線x+2y=0上截得的弦長為2
5

(1)求a,b滿足的關系;
(2)當a2+b2取得最小值時,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2an(n∈N*),則下列判斷中正確的是( 。
A、{an}是等差數(shù)列
B、{an}是等比數(shù)列
C、{an}既是等差數(shù)列,又是等比數(shù)列
D、{an}既不是等差數(shù)列,又不是等比數(shù)列

查看答案和解析>>

同步練習冊答案