13.(1)已知二次函數(shù)f(3x+1)=9x2-6x+5,求f(x)的解析式;
(2)設(shè)f(x)是定義在實(shí)數(shù)集R上 的函數(shù),滿(mǎn)足f(0)=1,且對(duì)任意的實(shí)數(shù)x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.

分析 (1)由題意,設(shè)出二次函數(shù)f(x)的解析式,利用待定系數(shù)法求解.
(2)利用賦值法求解f(x)的解析式.

解答 解:(1)由題意:已知f(x)是二次函數(shù),設(shè)函數(shù)f(x)=ax2+bx+c.
則f(3x+1)=a(3x+1)2+b(3x+1)+c=9ax2+6ax+a+3bx+b+c=9x2-6x+5,
由:$\left\{\begin{array}{l}{9a=9}\\{6a+3b=-6}\\{a+b+c=5}\end{array}\right.$,解得:a=1,b=-4,c=8
∴二次函數(shù)f(x)的解析式:f(x)=x2-4x+8.
(2)f(x)是定義在實(shí)數(shù)集R上 的函數(shù),
對(duì)任意的實(shí)數(shù)x,y有f(x-y)=f(x)-y(2x-y+1),
∵f(0)=1,
∴令x=y,
則有:f(0)=f(x)-x(2x-x+1),
整理得:f(x)=x2+x+1.
故得f(x)的解析式:f(x)=x2+x+1.

點(diǎn)評(píng) 本題考查了二次函數(shù)和抽象函數(shù)的解析式的求法.利用了待定系數(shù)法和賦值法.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=2x+2x-6的零點(diǎn)為x0,不等式x-4>x0的最小的整數(shù)解為k,則k=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知平面區(qū)域Ω=$\left\{{(x,y)\left|{0≤y≤\sqrt{4-{x^2}}}\right.}\right\}$直線l:y=mx+2m和曲線C:$\left\{{(x,y)\left|{\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.\begin{array}{l}{\;},{θ∈[{0,π}]}\end{array}}\right.}\right\}$,有兩個(gè)不同交點(diǎn),直線l與曲線C圍成的平面區(qū)域?yàn)镸,向區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)A,點(diǎn)A落在區(qū)域M內(nèi)有概率為P(M),若P(M)∈[$\frac{π-2}{2π},1}$],則實(shí)數(shù)m的取值范圍為[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若復(fù)數(shù)z=(a2+2a-3)+(a-3)i為純虛數(shù)(i為虛數(shù)單位),則a=( 。
A.-3B.-3或1C.3或-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)G(5,4),圓C1:(x-1)2+(y-4)2=25,過(guò)點(diǎn)G的動(dòng)直線l與圓C1相交于E、F兩點(diǎn),線段EF的中點(diǎn)為C,且C在圓C2上.
(1)若直線mx+ny-1=0(mn>0)經(jīng)過(guò)點(diǎn)G,求mn的最大值;
(2)求圓C2的方程;
(3)若過(guò)點(diǎn)A(1,0)的直線l1與圓C2相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,l1與l2:x+2y+2=0的交點(diǎn)為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}(x≤0)}\\{{x^2}(x>0)}\end{array}}$,那么f[f(-1)]的值為( 。
A.$\frac{1}{4}$B.4C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.非零向量$\overrightarrow a$,$\overrightarrow b$,滿(mǎn)足|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|=2|$\overrightarrow a$|,則向量$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$夾角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.由直線y=x-4,曲線y=$\sqrt{2x}$以及x軸所圍成的圖形面積為( 。
A.$\frac{25}{2}$B.13C.$\frac{40}{3}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=sinx+acosx圖象的一條對(duì)稱(chēng)軸是x=$\frac{π}{4}$,且當(dāng)x=θ時(shí),函數(shù)g(x)=sinx+f(x)取得最大值,則cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案